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ABSTRACT

Unlike traditional learning to rank models that depend on hand-

crafted features, neural representation learning models learn higher

level features for the ranking task by training on large datasets. Their

ability to learn new features directly from the data, however, may

come at a price. Without any special supervision, these models learn

relationships that may hold only in the domain from which the train-

ing data is sampled, and generalize poorly to domains not observed

during training. We study the effectiveness of adversarial learning

as a cross domain regularizer in the context of the ranking task.

We use an adversarial discriminator and train our neural ranking

model on a small set of domains. The discriminator provides a nega-

tive feedback signal to discourage the model from learning domain

specific representations. Our experiments show consistently better

performance on held out domains in the presence of the adversarial

discriminator—sometimes up to 30% on precision@1. However, as

the distributional gap between the train and the test domains increase,

we still observe relatively modest cross domain performances, even

under the adversarial settings.
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1 INTRODUCTION

Several neural ranking models have been proposed recently that

estimate the relevance of a document to a query by considering the

raw query-document text [8, 16] or based on the patterns of exact

query term matches in the document [6], or a combination of both

[12]. These models typically learn to distinguish between the input

feature distributions corresponding to a relevant and a less relevant

query-document pair by observing a large number of relevant and
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non-relevant samples during training. Unlike traditional learning to

rank (LTR) models that depend on hand-crafted features [10], these

deep neural models learn higher level representations useful for the

target task directly from the data. Their ability to learn features

from the training data is a powerful attribute that enables them to

potentially discover new relationships not captured by hand-crafted

features. However, as Mitra and Craswell [11] discuss, the ability

to learn new features may come at the cost of poor generalization

and performance on domains not observed during training. The

model, for example, may observe that certain pairs of phrases—e.g.,

“Theresa May” and “Prime Minister”—co-occur together more often

than others in the training corpus. Or, the model may conclude that

it is more important to learn a good representation for “Theresa May”

than for “John Major” based on their relative frequency of occur-

rences in training queries. While these correlations and distributions

are important if our goal is to achieve the best performance on a

single domain, the model must learn to be more robust to them if we

instead care about “out of box” performance on unseen domains, e.g.,

older TREC collections [21]. In contrast, traditional retrieval models

(e.g.BM25 [14]) and LTR models based on aggregated count based

features—that make fewer distributional assumptions—typically

exhibit more robust cross domain performances.

Our goal is to train deep neural ranking models that learn useful

representations from the data without “overfitting” to the distribu-

tions of the training domains. Recently, adversarial learning has been

shown to be an effective cross domain regularizer suitable for clas-

sification tasks [3, 19]. We adapt a similar strategy to force neural

ranking models to learn more domain invariant representations. We

train our neural ranking model on a small set of domains and evaluate

its performance on held out domains. During training, we combine

our ranking model with an adversarial discriminator that tries to

predict the domain of the training sample based on the representa-

tions learnt by the ranking model. The gradients from the adversarial

components are reversed when backpropagating through the layers

of the ranking model. This provides a negative feedback signal to

the ranking model to discourage it from learning representations

that may be significant only for specific domains. Our experiments

show consistent improvements in ranking performance on held out

domains from the proposed adversarial training—sometimes up to

30% improvement on precision@1.

2 RELATED WORK

Adversarial networks surfaced shortly after they were introduced

in the generative adversarial network (GAN) model. Goodfellow et
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L = Lrel(q,dr ,dnr ,θD ,θrel)

− λ ·
(

Ladv(q,dr ,θD ) + Ladv(q,dnr ,θD )
) (7)

Passage Retrieval Models. We evaluate our adversarial learning

approach on the passage retrieval task. We employ the neural ranking

model proposed by Tan et al. [18]—referred to as CosSim in the

remaining sections—and the Duet model [12] as our baselines. Our

focus in this paper is on learning domain agnostic text representa-

tions. Therefore, similar to Zamani et al. [22] we only consider the

distributed sub-network of the Duet model.

The CosSim model is an LSTM-based interaction focused archi-

tecture. We train the CosSim model in the same manner as [18], with

a margin of 0.2 over a hinge loss function. The Duet-distributed is

trained by maximizing the log likelihood of the correct passage, as

originally proposed. Similar to [13], we adapt the hyper-parameters

of the Duet model for passage retrieval. The output of the Hadamard

product is significantly reduced by taking the max pooled repre-

sentation rather than flattening the entire tensor. Additionally, the

query length is expanded to 20 from 8 tokens, and the max document

length is reduced to 300 from the original 1000 tokens.

As opposed to past uses of adversarial agents [3, 7, 19], ranking re-

quires modeling an interaction between the query and the document.

As shown in Figure 1a, the adversarial discriminator in our setting,

therefore, inspects the joint query-document representation learned

by the neural ranking models. For deeper architectures, such as the

Duet-distributed, we allow the discriminator to inspect additional

layers within the ranking model, as shown in Figure 1b.

4 EXPERIMENTS

4.1 Data

L4. We use Yahoo’s Webscope L4 high quality "Manner" col-

lection [17]. For evaluation and training, all answers that were not

the highest voted were removed from the collection to reduce label

noise during training and provide a better judgment of performance

during evaluation. Training, development, and test sets were created

from a 80-10-10 split. Telescoping is used to create answer pools for

evaluation from the top 9 BM25 retrieved answers as in [1].

InsuranceQA. In the InsuranceQA dataset, questions are created

from real user submissions and the high quality answers come from

insurance professionals. The dataset consists of 12,887 QA pairs

for training, 1,000 pairs for validation, and two tests sets containing

1,800 pairs. For testing, each of the 1,800 QA pairs is evaluated with

499 randomly sampled candidate answers.

WebAP. As both L4 and InsuranceQA are based on isolated pas-

sage retrieval for a directed question, we include the WebAP collec-

tion from Keikha et al. [9] to examine how well a model trained on

isolated passages with specific questions can generalize to a more

general passage retrieval task. The format of this collection consists

of 82 TREC queries with a total of 8,027 answer passages in total.

As only relevant answer passages are annotated in this collection,

we create non-relevant documents by using a sliding window of

random size. Evaluation is done over a telescoped list of top 100

BM25 retrieved documents.

4.2 Training

We tried two different training settings—updating the ranking model

and the discriminator parameters alternately as proposed by Good-

fellow et al. [5], and simultaneously. We also tried different values

for λ. Based on our validation results, we choose to train the CosSim

model with alternate updates and λ = 1. For the Duet-distributed

model, we see best performance with simulataneous updates and

λ = 0.25. All models were trained with PyTorch 1 and we implement

early stopping based on the validation set.

4.3 Evaluation

We evaluate our proposed adversarial approach to cross domain

regularization under two settings. Under the cross topic setup, we

consider the 25 topics in the L4 dataset. We evaluate separately

on four of these topics—Sports, Home, Politics, and Travel—each

time training the corresponding models on the remaining 24 topics.

For the cross collection setup, we consider all three collections

introduced in Section 4.1. Similar to the cross topic setting, we

evaluate our models on each collection individually while training on

the remaining two. However, due to more pronounced differences in

both size and distributions between these collections—as compared

to the differences between the L4 topics—our basic adversarial

approach had limited success on the cross collection task. Thus,

we adopt two additional changes to our training regime: (i) we

sample the training data from the training collections equally to avoid

over-fitting to any single collection, and (ii) we feed training samples

from the evaluation collection to the adversarial discriminator. We

make sure that the training samples from the evaluation collection

have no overlap with the test samples. In addition, we clarify that

the ranking model receives no parameter updates from these training

samples with respect to relevance judgments. These samples are

only used to train the discriminator model’s loss. This training setup

may be appropriate when we want to train on some collections

and evaluate on a different collection, where we can leverage the

unlabeled documents from the target collection to at least guide the

training of the adversarial component.

5 RESULTS AND DISCUSSION

Cross Topic. Table 1 show the poor performance of the CosSim

and Duet-distributed models on the four target topics when trained

on the remaining collection. Notably, training on the topic specific

data alone also performs poorly likely because of inadequate training

data. However, in the presence of the adversarial discriminator both

the models show significant improvement in performance on all held

out topics. The improvements are somewhat bigger on the Duet-

distributed baseline. We posit this is because the Duet-distributed

model—with a deeper architecture—fits the training domain better

at the cost of further loss in performance on the held out domains.

Therefore, the adversarial learning has a stronger regularization

opportunity on the Duet-distributed model.

Cross Collection. In similar vein as the cross topic evaluation, the

incorporation of the adversarial signal significantly increases perfor-

mance on the held out collections in Table 2. However, the difference

in both size and distributional properties between these collections

1https://github.com/pytorch/pytorch
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CosSim Duet-Dist.

source → target Size Original Adv Original Adv

P@1 MRR P@1 MRR P@1 MRR P@1 MRR

All→All 142627 0.4229 0.6188 0.4213(-.3%) 0.6214(+.4%) 0.4514 0.6136 0.4286(-5%)† 0.6061(-1%)†

All*→Sports 139000 0.3282 0.5194 0.4041(+23%)† 0.5925(+12%)† 0.2570 0.4567 0.3282(+28%)† 0.5011(+10%)†

Sports→Sports 3627 0.2146 0.5482 - - 0.2415 0.3734 - -

All*→Home 133372 0.3460 0.5275 0.3645(+5%)† 0.5433(+3%)† 0.3314 0.5285 0.3639(+10%)† 0.5457(+3%)†

Home→Home 9255 0.3014 0.5490 - - 0.2477 0.4119 - -

All*→Politics 138739 0.3100 0.5101 0.3580(+16%)† 0.5507(+8%)† 0.3400 0.5291 0.3516(+3%)† 0.5342(+3%)†

Politics→Politics 3888 0.2219 0.5234 - - 0.2160 0.5388 - -

All*→Travel 140150 0.2360 0.4486 0.2789(+18%)† 0.4723(+5%)† 0.2158 0.4196 0.2842(+32%)† 0.4532(+8%)†

Travel→Travel 2477 0.2263 0.5181 - - 0.1895 0.3998 - -

Table 1: Performance across L4 topics, where metrics under each collections represents the performance of the model trained on the

opposing two collections. All* is the entire L4 collection with target topic removed. † represents significance against non adversarial

model (p < 0.05, Wilcoxon test)

CosSim Duet-Dist.

source → target Original Adv Original Adv

P@1 MRR P@1 MRR P@1 MRR P@1 MRR

(InsuranceQA, L4)→ WebAP 0.0901 0.2410 0.2500 0.3873 0.1250 0.4567 0.3286† 0.5011†

(InsuranceQA, WebAP)→ L4 0.1120 0.2957 0.2424† 0.4335† 0.0758 0.1939 0.3908† 0.5642†

(L4, WebAP)→ InsuranceQA 0.1406 0.4267 0.1582 0.4717† 0.0489 0.1473 0.1622† 0.3059†

Table 2: Performance across collections, where metrics under each collections represents the performance of the model trained on the

opposing two collections. † represents significance against non adversarial model (p < 0.05, Wilcoxon test)

are far greater. Therefore, while the addition of the adversarial dis-

criminator results in significant improvements—the absolute per-

formance on the held out collections are still modest, even with

adversarial regularization. We interpret these results as a reminder

of the challenges in adapting these models to unseen domains.

6 CONCLUSION AND FUTURE WORK

The proposed adversarial approach to cross domain regularization

shows significant performance improvements consistently under

two evaluation settings (cross topic and cross collection) and over

two different deep neural baselines. However, these improvements

should be grounded in the realization that a model trained on large

in-domain data is still likely to have a significant advantage over

these models. Machine learning approaches to ad-hoc retrieval may

need significantly more breakthroughs before achieving the level of

robustness as some of the traditional retrieval models.
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