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ABSTRACT

Learning a high-dimensional dense representation for vocabulary

terms, also known as a word embedding, has recently a�racted

much a�ention in natural language processing and information

retrieval tasks. �e embedding vectors are typically learned based

on term proximity in a large corpus. �is means that the objective

in well-known word embedding algorithms, e.g., word2vec, is to

accurately predict adjacent word(s) for a given word or context.

However, this objective is not necessarily equivalent to the goal

of many information retrieval (IR) tasks. �e primary objective in

various IR tasks is to capture relevance instead of term proximity,

syntactic, or even semantic similarity. �is is the motivation for

developing unsupervised relevance-based word embedding models

that learn word representations based on query-document rele-

vance information. In this paper, we propose two learning models

with different objective functions; one learns a relevance distribu-

tion over the vocabulary set for each query, and the other classifies

each term as belonging to the relevant or non-relevant class for

each query. To train our models, we used over six million unique

queries and the top ranked documents retrieved in response to

each query, which are assumed to be relevant to the query. We

extrinsically evaluate our learned word representation models us-

ing two IR tasks: query expansion and query classification. Both

query expansion experiments on four TREC collections and query

classification experiments on the KDD Cup 2005 dataset suggest

that the relevance-based word embedding models significantly out-

perform state-of-the-art proximity-based embedding models, such

as word2vec and GloVe.
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1 INTRODUCTION

Representation learning is a long-standing problem in natural lan-

guage processing (NLP) and information retrieval (IR). �e main

motivation is to abstract away from the surface forms of a piece

of text, e.g., words, sentences, and documents, in order to alleviate

sparsity and learn meaningful similarities, e.g., semantic or syn-

tactic similarities, between two different pieces of text. Learning

representations for words as the atomic components of a language,

also known as word embedding, has recently a�racted much a�en-

tion in the NLP and IR communities.

A popular model for learning word representation is neural

network-based language models. For instance, the word2vec model

proposed by Mikolov et al. [24] is an embedding model that learns

word vectors via a neural network with a single hidden layer. Con-

tinuous bag of words (CBOW) and skip-gram are two implementa-

tions of the word2vec model. Another successful trend in learning

semantic word representations is employing global matrix factor-

ization over word-word matrices. GloVe [28] is an example of such

methods. A theoretical relation has been discovered between em-

bedding models based on neural network and matrix factorization

in [21]. �ese models have been demonstrated to be effective in a

number of IR tasks, including query expansion [11, 17, 40], query

classification [23, 41], short text similarity [15], and document

model estimation [2, 31].

�e aforementioned embedding models are typically trained

based on term proximity in a large corpus. For instance, theword2vec

model’s objective is to predict adjacent word(s) given a word or

context, i.e., a context window around the target word. �is idea

aims to capture semantic and syntactic similarities between terms,

since semantically/syntactically similar words o�en share similar

contexts. However, this objective is not necessarily equivalent to

the main objective of many IR tasks. �e primary objective in

many IR methods is to model the notion of relevance [20, 34, 43].

In this paper, we revisit the underlying assumption of typical word

embedding methods, as follows:

�e objective is to predict the words observed in the documents

relevant to a particular information need.

�is objective has been previously considered for developing rel-

evance models [20], a state-of-the-art (pseudo-) relevance feedback

approach. Relevance models try to optimize this objective given

a set of relevant documents for a given query as the indicator of

user’s information need. In the absence of relevance information,

the top ranked documents retrieved in response to the query are

assumed to be relevant. �erefore, relevance models, and in gen-

eral all pseudo-relevance feedback models, use an online se�ing

to obtain training data: retrieving documents for the query and
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then using the top retrieved documents in order to estimate the rel-

evance distribution. Although relevance models have been proved

to be effective in many IR tasks [19, 20], having a retrieval run for

each query to obtain the training data for estimating the relevance

distribution is not always practical in real-world search engines.

We, in this paper, optimize a similar objective in an offline se�ing,

which enables us to predict the relevance distribution without any

retrieval runs during the test time. To do so, we consider the top

retrieved documents for millions of training queries as a training

set and learn embedding vectors for each term in order to predict

the words observed in the top retrieved documents for each query.

We develop two relevance-based word embedding models. �e first

one, the relevance likelihood maximization model (RLM), aims to

model the relevance distribution over the vocabulary terms for each

query, while the second one, the relevance posterior estimation

model (RPE), classifies each term as relevant or non-relevant to

each query. We provide efficient learning algorithms to train these

models on large amounts of training data. Note that our models

are unsupervised and the training data is generated automatically.

To evaluate our models, we performed two sets of extrinsic eval-

uations. In the first set, we focus on the query expansion task for

ad-hoc retrieval. In this set of experiments, we consider four TREC

collections, including two newswire collections (AP and Robust)

and two large-scale web collections (GOV2 and ClueWeb09 - Cat.

B). Our results suggest that the relevance-based embedding mod-

els outperform state-of-the-art word embedding algorithms. �e

RLM model shows be�er performance compared to RPE in the con-

text of query expansion, since the goal is to estimate the probability

of each term given a query and this distribution is not directly

learned by the RPE model. In the second set of experiments, we

focus on the query classification task using the KDD Cup 2005 [22]

dataset. In this extrinsic evaluation, the relevance-based embedding

models again perform be�er than the baselines. Interestingly, the

query classification results demonstrate that the RPE model outper-

forms the RLM model, for the reason that in this task, unlike the

query expansion task, the goal is to compute the similarity between

two query vectors, and RPE can learn more accurate embedding

vectors with less training data.

2 RELATED WORK

Learning a semantic representation for text has been studied for

many years. Latent semantic indexing (LSI) [8] can be considered

as early work in this area that tries to map each text to a semantic

space using singular value decomposition (SVD), a well-known

matrix factorization algorithm. Subsequently, Clinchant and Per-

ronnin [5] proposed Fisher Vector (FV), a document representation

framework based on continuous word embeddings, which aggre-

gates a non-linear mapping of word vectors into a document-level

representation. However, a number of popular IR models, such

as BM25 and language models, o�en significantly outperform the

models that are based on semantic similarities. Recently, extremely

efficient word embedding algorithms have been proposed to model

semantic similarly between words.

Word embedding, also known as distributed representation of

words, refers to a set of machine learning algorithms that learn

high-dimensional real-valued dense vector representation ~w ∈ Rd

for each vocabulary term w , where d denotes the embedding di-

mensionality. GloVe [28] and word2vec [24] are two well-known

word embedding algorithms that learn embedding vectors based

on the same idea, but using different machine learning techniques.

�e idea is that the words that o�en appear in similar contexts are

similar to each other. To do so, these algorithms try to accurately

predict the adjacent word(s) given a word or a context (i.e., a few

words appeared in the same context window). Recently, Rekabsaz

et al. [30] proposed to exploit global context in word embeddings

in order to avoid topic shi�ing.

Word embedding representations can be also learned as a set of

parameters in an end-to-end neural network model. For instance,

Zamani et al. [39] trained a context-aware ranking model in which

the embedding vectors of frequent n-grams are learned using click

data. More recently, Dehghani et al. [9] trained neural ranking

models with weak supervision data (i.e., a set of noisy training data

automatically generated by an existing unsupervised model) that

learn word representations in an end-to-end ranking scenario.

Word embedding vectors have been successfully employed in

several NLP and IR tasks. Kusner et al. [16] proposed word mover’s

distance (WMD), a function for calculating semantic distance be-

tween two documents, which measures the minimum traveling

distance from the embedded vectors of individual words in one doc-

ument to the other one. Zhou et al. [47] introduced an embedding-

based method for question retrieval in the context of community

question answering. Vulić and Moens [37] proposed a model to

learn bilingual word embedding vectors from document-aligned

comparable corpora. Zheng and Callan [46] presented a supervised

embedding-based technique to re-weight terms in the existing IR

models, e.g., BM25. Based on the well-defined structure of lan-

guage modeling framework in information retrieval, a number of

methods have been introduced to employ word embedding vec-

tors within this framework in order to improve the performance

in IR tasks. For instance, Zamani and Cro� [40] presented a set of

embedding-based query language models using the query expan-

sion and pseudo-relevance feedback techniques that benefit from

the word embedding vectors. �ery expansion using word embed-

ding has been also studied in [11, 17, 35]. All of these approaches

are based on word embeddings learned based on term proximity

information. PhraseFinder [14] is an early work using term prox-

imity information for query expansion. Mapping vocabulary terms

to HAL space, a low-dimensional space compared to vocabulary

size, has been used in [4] for query modeling.

As is widely known in the information retrieval literature [11, 38],

there is a big difference between the unigram distribution of words

on sub-topics of a collection and the unigram distribution estimated

from the whole collection. Given this phenomenon, Diaz et al. [11]

recently proposed to train word embedding vectors on the top

retrieved documents for each query. However, this model, called

local embedding, is not always practical in real-word applications,

since the embedding vectors need to be trained during the query

time. Furthermore, the objective function in local embedding is

based on term proximity in pseudo-relevant documents.

In this paper, we propose two models for learning word embed-

ding vectors, that are specifically designed for information retrieval

needs. All the aforementioned tasks in this section can potentially

benefit from the vectors learned by the proposed models.
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unsupervised. However, if explicit relevance data is available, such

as click data, without loss of generality, both the explicit or implicit

relevant documents can be considered for training our models. We

leave studying the vectors learned based on supervised signals for

future work.

To formally describe our training data, letT = {(q1,R1), (q2,R2),

· · · , (qm ,Rm )} be a training set withm training queries. �e ith

element of this set is a pair of query qi and the corresponding

pseudo-relevance feedback distribution. �ese distributions are es-

timated based on the top k retrieved documents (in our experiments,

we set k to 10) for each query. �e distributions can be estimated us-

ing any PRF model, such as those proposed in [20, 36, 42, 44]. In this

paper, we only focus on the relevance model [20], a state-of-the-art

PRF model, that estimates the relevance distribution as:

p (w |Ri ) ∝
∑

d ∈Fi

p (w |d )
∏

w ′∈qi

p (w ′ |d ) (3)

where Fi denotes a set of top retrieved documents for query qi .

Note that the probability of terms that do not appear in the top

retrieved documents is equal to zero.

3.3 Relevance Likelihood Maximization Model

In this model, the goal is to learn the relevance distribution R.

Given a set of training data, we aim to find a set of parameters θR
in order to maximize the likelihood of generating relevance model

probabilities for the whole training set. �e likelihood function is

defined as follows:
m∏

i=1

∏

w ∈Vi

p̂ (w |qi ;θR )
p (w |Ri ) (4)

where p̂ is the relevance distribution that can be obtained given

the learning parameters θR and p (w |Ri ) denotes the relevance

model distribution estimated for the ith query in the training set

(see Section 3.2 for more detail). Vi denotes a subset of vocabulary

terms that appeared in the top ranked documents retrieved for the

query qi . �e reason for iterating over the terms that appeared in

this set instead of the whole vocabulary setV is that the probability

p (w |Ri ) is equal to zero for all termsw ∈ V −Vi .

In this method, we model the probability distribution p̂ using the

so�max function (i.e., the function σ in Equation (2)) as follows:1

p̂ (w |q;θR ) =
exp (~wT ~q)

∑
w ′∈V exp ( ~w ′

T
~q)

(5)

where ~w denotes the learned embedding vector for termw and ~q is

the query vector came from the output of the hidden layer in our

network (see Section 3.1). According to the so�max modeling and

the log-likelihood function, we have the following objective:

argmax
θR

m∑

i=1

∑

w ∈Vi

p (w |Ri ) *,log exp (~w
T
~qi ) − log

∑

w ′∈V

exp ( ~w ′
T
~qi )+-
(6)

Computing this objective function and its derivatives would

be computationally expensive (due to the presence of the normal-

ization factor
∑
w ′∈V exp ( ~w ′

T
~q) in the objective function). Since

all the word embedding vectors as well as the query vector are

1For simplicity, we drop the bias term in these equations.

changed during the optimization process, we cannot simply omit

the normalization term as is done in [41] for estimating query em-

bedding vectors based on pre-trained word embedding vectors. To

make the computations more tractable, we consider a hierarchical

approximation of the so�max function, which was introduced by

Morin and Bengio [26] in the context of neural network language

models and then successfully employed by Mikolov et al. [24] in

the word2vec model.

�e hierarchical so�max approximation uses a binary tree struc-

ture to represent the vocabulary terms, where each leaf corresponds

to a unique word. �ere exists a unique path from the root to each

leaf, and this path is used for estimating the probability of the word

representing by the leaf. �erefore, the complexity of calculating

so�max probabilities goes down from O ( |V |) to O (log( |V |)) which

is the height of the tree. �is leads to a huge improvement in com-

putational complexity. We refer the reader to [25, 26] for the details

of calculating the hierarchical so�max approximation.

3.4 Relevance Posterior Estimation Model

As an alternative to maximum likelihood estimation, we can esti-

mate the relevance posterior probability. In the context of pseudo-

relevance feedback, Zhai and Laffery [44] assumed that the lan-

guage model of the top retrieved documents is estimated based on a

mixture model. In other words, it is assumed that there are two lan-

guage models for the feedback set: the relevance language model2

and a background noisy language model. �ey used an expectation-

maximization algorithm to estimate the relevance language model.

In this model, we make use of this assumption in order to cast the

problem of estimating the relevance distribution R as a classifica-

tion task: Given a pair of word w and query q, does w come from

the relevance distribution of the query q? Instead of p (w |R ), this

model estimates p (R = 1|w,q;θR ) where R is a Boolean variable

and R = 1 means that the given term-query pair (w,q) comes from

the relevance distribution R . θR is a set of parameters that is going

to be learned during the training phase.

�erefore, the problem is cast as a binary classification task that

can be modeled by logistic regression (which means the function σ

in Equation (2) is the sigmoid function):

p̂ (R = 1|~w, ~q;θR ) =
1

1 + e (−~w
T ~q )

(7)

where ~w is the relevance-based word embedding vector for termw .

Similar to the previous model, ~q is the output of the hidden layer

of the network, representing the query embedding vector.

In order to address this binary classification problem, we consider

a cross-entropy loss function. In theory, for each training query,

our model should learn to model relevance for the terms appearing

in the corresponding pseudo-relevant set and non-relevance for all

the other vocabulary terms, which could be impractical, due to the

large number of vocabulary terms. Similar to [24], we propose to

use the noise contrastive estimation (NCE) [12] which hypothesizes

that we can achieve a good model by only differentiating the data

from noise via a logistic regressionmodel. �emain concept in NCE

is similar to those proposed in the divergence from randomness

model [3] and the divergence minimization feedback model [44].

2�e phrase “topical language model” was used in the original work [44]. We call it
“relevance language model” to have consistent definitions in our both models.
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Based on the NCE hypothesis, we define the following negative

cross-entropy objective function for training our model:

argmax
θR

m∑

i=1


η+∑

j=1

Ew j∼p (w |Ri )

[
log p̂ (R = 1| ~w j , ~qi ;θR )

]

+

η−∑

j=1

Ew j∼pn (w )

[
log p̂ (R = 0| ~w j , ~qi ;θR )

]
(8)

where pn (w ) denotes a noise distribution and η = (η+,η−) is a

pair of hyper-parameters to control the number of positive and

negative instances per query, respectively. We can easily calculate

p̂ (R = 0| ~w j , ~qi ) = 1 − p̂ (R = 1| ~w j , ~qi ). �e noise distribution pn (w )

can be estimated using a function of unigram distributionU (w ) in

the whole training set. Similar to [24], we use pn (w ) ∝ U (w )3/4

which has been empirically shown to work effectively for negative

sampling.

It is notable that although this model learns embedding vec-

tors for both queries and words, it is not obvious how to calculate

the probability of each term given a query; because Equation 7

only gives us a classification probability and we cannot simply

use the Bayes rule here (since, not all probability components are

known). �is model can perform well when computing the sim-

ilarity between two terms or two queries, but not a query and a

term. However, we can use the model presented in [41] to estimate

the query model using the word embedding vectors (not the ones

learned for query vectors) and then calculate the similarity between

a query and a term.

4 EXPERIMENTS

In this section, we first describe how we train the relevance-based

word embedding models. We further extrinsically evaluate the

learned embeddings using two IR tasks: query expansion and query

classification. Note that the main aim here is to compare the pro-

posed models with the existing word embedding algorithms, not

with the state-of-the-art query expansion and query classification

models.

4.1 Training

In order to train relevance-based word embeddings, we obtained

millions of unique queries from the publicly available AOL query

logs [27]. �is dataset contains a sample of web search queries from

real users submi�ed to the AOL search engine within a three-month

period from March 1, 2006 to May 31, 2006. We only used query

strings and no session and click information was obtained from this

dataset. We filtered out the navigational queries containing URL

substrings, i.e., “h�p”, “www.”, “.com”, “.net”, “.org”, “.edu”. All non-

alphanumeric characters were removed from all queries. Applying

all these constraints leads to over 6 millions unique queries as our

training query set. To estimate the relevance model distributions

in the training set, we considered top 10 retrieved documents in

a target collection in response to each query using the Galago3

implementation of the query likelihood retrieval model [29] with

Dirichlet prior smoothing (µ = 1500) [45].

3h�p://www.lemurproject.org/galago.php

We implemented and trained our models using TensorFlow4.

�e networks are trained based on the stochastic gradient descent

optimizer using the back-propagation algorithm [33] to compute

the gradients. All model hyper-parameters were tuned on the

training set (the hyper-parameters with the smallest training loss

value were selected). For each model, the learning rate and the

batch size were selected from [0.001, 0.01, 0.1, 1] and [64, 128, 256],

respectively. For RPE , we also tuned the number of positive and

negative instances (i.e., η+ and η−). �e value of η+ was swept

between [20, 50, 100, 200] and the parameter η− was selected from

[5η+, 10η+, 20η+]. As suggested in [40], in all the experiments

(unless otherwise stated) the embedding dimensionality was set to

300, for all models including the baselines.

4.2 Evaluation via �ery Expansion

In this subsection, we evaluate the embedding models in the context

of query expansion for the ad-hoc retrieval task. In the following,

we first describe the retrieval collections used in our experiments.

We further explain our experimental setup as well as the evaluation

metrics. We finally report and discuss the query expansion results.

4.2.1 Data. We use four standard test collections in our ex-

periments. �e first two collections (AP and Robust) consist of

thousands of news articles and are considered as homogeneous col-

lections. AP and Robust were previously used in TREC 1-3 Ad-Hoc

Track and TREC 2004 Robust Track, respectively. �e second two

collections (GOV2 and ClueWeb) are large-scale web collections

containing heterogeneous documents. GOV2 consists of the “.gov”

domain web pages, crawled in 2004. ClueWeb (i.e., ClueWeb09-

Category B) is a common web crawl collection that only contains

English web pages. GOV2 and ClueWeb were previously used in

TREC 2004-2006 Terabyte Track and TREC 2009-2012 Web Track,

respectively. �e statistics of these collections as well as the corre-

sponding TREC topics are reported in Table 1. We only used the

title of topics as queries.

4.2.2 Experimental Setup. We cleaned the ClueWeb collection

by filtering out the spam documents. �e spam filtering phase was

done using theWaterloo spam scorer5 [6] with the threshold of 60%.

Stopwords were removed from all collections using the standard

INQUERY stopword list and no stemming were performed.

For the purpose of query expansion, we consider the language

modeling framework [29] and estimate a query language model

based on a given set of word embedding vectors. �e expanded

query language model p (w |θ∗q ) is estimated as:

p (w |θ∗q ) = αpML (w |q) + (1 − α )p (~w |~q) (9)

where pML (w |q) denotes maximum likelihood estimation of the

original query and α is a free hyper-parameter that controls the

weight of original query model in the expanded model. �e prob-

ability p (~w |~q) is calculated based on the trained word embedding

vectors. In our first model, this probability can be estimated using

Equation (5); while in the second model, we should simply use the

Bayes rule given Equation (7) to estimate this probability. However,

since we do not have any information about the probability of each

4h�p://tensorflow.org/
5h�p://plg.uwaterloo.ca/∼gvcormac/clueweb09spam/
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Table 1: Collections statistics.

ID collection queries (title only) #docs avg doc length #qrels

AP Associated Press 88-89 TREC 1-3 Ad-Hoc Track, topics 51-200 165k 287 15,838

Robust
TREC Disks 4 & 5 minus

Congressional Record

TREC 2004 Robust Track,

topics 301-450 & 601-700
528k 254 17,412

GOV2 2004 crawl of .gov domains
TREC 2004-2006 Terabyte Track,

topics 701-850
25m 648 26,917

ClueWeb ClueWeb 09 - Category B
TREC 2009-2012 Web Track

topics 1-200
50m 1506 18,771

Table 2: Evaluating relevance-based word embeddings in the context of query expansion. �e superscripts 0/1/2/3/4 denote

that the MAP improvements over MLE/word2vec-external/word2vec-target/GloVe-external/GloVe-target are statistically sig-

nificant. �e highest value in each row is marked in bold.

Collection Metric MLE
word2vec GloVe Rel.-based Embedding

external target external target RLM RPE

AP

MAP 0.2197 0.2399 0.2420 0.2319 0.2389 0.258001234 0.254301234

P@20 0.3503 0.3688 0.3738 0.3581 0.3631 0.388601234 0.3812034

NDCG@20 0.3924 0.4030 0.4181 0.4025 0.4098 0.424201234 0.422601234

Robust

MAP 0.2149 0.2218 0.2215 0.2209 0.2172 0.245001234 0.237201234

P@20 0.3319 0.3357 0.3337 0.3345 0.3281 0.347601234 0.3409024

NDCG@20 0.3863 0.3918 0.3881 0.3918 0.3844 0.398201234 0.39550

GOV2

MAP 0.2702 0.2740 0.2723 0.2718 0.2709 0.286701234 0.285501234

P@20 0.5132 0.5257 0.5172 0.5186 0.5128 0.536701234 0.535801234

NDCG@20 0.4482 0.4571 0.4509 0.4539 0.4485 0.457601234 0.455701234

ClueWeb

MAP 0.1028 0.1033 0.1033 0.1029 0.1026 0.106601234 0.1031

P@20 0.3025 0.3040 0.3053 0.3033 0.3048 0.3073 0.3030

NDCG@20 0.2237 0.2235 0.2252 0.2244 0.2244 0.227301 0.2241

term given a query, we use the uniform distribution. For other word

embedding models (i.e., word2vec and GloVe), we use the standard

method described in [11]. For all the models, we ignore the terms

whose embedding vectors are not available.

We retrieve the documents for the expanded query language

model using the KL-divergence formula [18] with Dirichlet prior

smoothing (µ = 1500) [45]. All the retrieval experiments were

carried out using the Galago toolkit [7].

In all the experiments, the parameters α (the linear interpolation

coefficient) andm (the number of expansion terms) were set using

2-fold cross-validation over the queries in each collection. We

selected the parameter α from {0.1, . . . , 0.9} and the parameterm

from {10, 20, ..., 100}.

4.2.3 Evaluation Metrics. To evaluate the effectiveness of query

expansion models, we report three standard evaluation metrics:

mean average precision (MAP) of the top ranked 1000 documents,

precision of the top 20 retrieved documents (P@20), and normalized

discounted cumulative gain [13] calculated for the top 20 retrieved

documents (nDCG@20). Statistically significant differences of MAP,

P@20, and nDCG@20 values based on the two-tailed paired t-test

are computed at a 95% confidence level (i.e., p value < 0.05).

4.2.4 Results and Discussion. To evaluate our models, we con-

sider the following baselines: (i) the standard maximum likelihood

estimation (MLE) of the query model without query expansion, (ii)

two sets of embedding vectors (one trained on Google News as a

large external corpus and one trained on the target retrieval col-

lection) learned by the word2vec model6 [24], and (iii) two sets of

embedding vectors (one trained on Wikipedia 2004 plus Gigawords

5 as a large external corpus7 and the other on the target retrieval

collection) learned by the GloVe model [28].

Table 2 reports the results achieved by the proposed models and

the baselines. According to this table, all the query expansion mod-

els outperform the MLE baseline in nearly all cases, which indicates

the effectiveness of employing high-dimensional word representa-

tions for query expansion. Similar observations have been made in

[11, 17, 40, 41]. According to the results, although word2vec per-

forms slightly be�er than GloVe, no significant differences can be

observed between their performances. According to Table 2, both

relevance-based embedding models outperform all the baselines in

all the collections, which shows the importance of taking relevance

into account for training embedding vectors. �ese improvements

are o�en statistically significant compared to all the baselines. �e

relevance likelihood maximization model (RLM) performs be�er

than the relevance posterior estimation model (RPE) in all cases

and the reason is related to their objective function. RLM learns

the relevance distribution for all terms, while RPE learns the clas-

sification probability of being relevance for vocabulary terms (see

Equations (5) and (7)).

6We use the CBOW implementation of the word2vec model. �e skip-gram model
also performs similarly.
7Available at h�p://nlp.stanford.edu/projects/glove/.
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Table 3: Top 10 expansion terms obtained by the word2vec and the relevance-based word embedding models for two sample

queries “indian american museum” and “tibet protesters”.

query: “indian american museum” query: “tibet protesters”

word2vec Rel.-based Embedding word2vec Rel.-based Embedding

external target RLM RPE external target RLM RPE

history powwows chumash heye demonstrators tibetan tibetan tibetan

art smithsonian heye collection protestors lhasa lama tibetans

culture afro artifacts chumash tibetan demonstrators tibetans lama

british mesoamerica smithsonian smithsonian protests tibetans lhasa independence

heritage smithsonians collection york tibetans marchers dalai lhasa

society native washington new protest lhasas independence dalai

states heye institution apa activists jokhang protest open

contemporary hopi york native protesting demonstrations open protest

part mayas native americans lhasa dissidents zone zone

united cimam apa history demonstrations barkhor followers jokhang

To get a sense of what is learned by each of the embedding

models8, in Table 3 we report the top 10 expansion terms for two

sample queries from the Robust collection. According to this table,

the terms added to the query by the word2vec model are syntac-

tically or semantically related to individual query terms, which

is expected. For the query “indian american museum” as an ex-

ample, the terms “history”, “art”, and “culture” are related to the

query term “museum”, while the terms “united” and “states” are

related to the query term “american”. In contrast, looking at the

expansion terms obtained by the relevance-based word embed-

dings, we can see that some relevant terms to the whole query

were selected. For instance, “chumash” (a group of native amer-

icans)9, “heye” (the national museum of the American Indian in

New York), “smithsonian” (the national museum of the American

Indian in Washington DC), and “apa” (the American Psychological

Association that actively promotes American Indian museums). A

similar observation can be made for the other sample query (i.e.,

“tibet protesters”). For example, the word “independence” is related

to the whole query that was only selected by the relevance-based

word embedding models, while the terms “protestors”, “protests”,

“protest”, and “protesting” that are syntactically similar to the query

term “protesters” were considered by the word2vec model. We

believe that these differences are due to the learning objective of

the models. Interestingly, the expansion terms added to each query

by the two relevance-based models look very similar, but according

to Table 2, their performances are quite different. �e reason is

related to the weights given to each term by the two models. �e

weights given to the expansion terms by RPE are very close to each

other because its objective is to just classify each term and all of

these terms are classified with a high probability as “relevant”.

In the next set of experiments, we consider the methods that use

the top retrieved documents for query expansion: the relevance

model (RM3) [1, 20] as a state-of-the-art pseudo-relevance feedback

model, and the local embedding approach recently proposed by

Diaz et al. [11] with the general idea of training word embedding

models on the top ranked documents retrieved in response to a

given query. Similar to [11], we use the word2vec model to train

8For the sake of space, we only report the expanded terms estimated by the word2vec
model and the proposed models.
9see h�ps://en.wikipedia.org/wiki/Chumash people

Table 4: Evaluating relevance-based word embedding in

pseudo-relevance feedback scenario. �e superscripts 1/2/3

denote that theMAP improvements over RM3/Local Embed-

ding/ERMwith Local Embedding are statistically significant.

�e highest value in each row is marked in bold.

Collection Metric RM3
Local ERM

Emb. Local RLM

AP

MAP 0.2927 0.2412 0.3047 0.311912

P@20 0.4034 0.3742 0.4105 0.423312

NDCG@20 0.4368 0.4173 0.4411 0.4495123

Robust

MAP 0.2593 0.2235 0.2643 0.2761123

P@20 0.3486 0.3366 0.3498 0.3605123

NDCG@20 0.4011 0.3868 0.4080 0.4173123

GOV2

MAP 0.2863 0.2748 0.2924 0.2986123

P@20 0.5318 0.5271 0.5379 0.541712

NDCG@20 0.4503 0.4576 0.4584 0.4603123

ClueWeb

MAP 0.1079 0.1041 0.1094 0.112112

P@20 0.3111 0.3062 0.3145 0.3168

NDCG@20 0.2309 0.2261 0.2328 0.23602

word embedding vectors on top 1000 documents. �e results are re-

ported in Table 4. In this table, ERM refers to the embedding-based

relevance model recently proposed by Zamani and Cro� [40] in

order to make use of semantic similarities estimated based on the

word embedding vectors in a pseudo-relevance feedback scenario.

According to Table 4, the ERM model that uses the relevance-based

word embedding (RLM10) outperforms all the other methods. �ese

improvements are statistically significant in most cases. By compar-

ing the results obtained by local embedding and those reported in

Table 2, it can be observed that there are no substantial differences

between the results for local embedding and word2vec. �is is

similar to what is reported by Diaz et al. [11] when the embedding

vectors are trained on the top documents in the target collection,

similar to our se�ing. Note that the relevance-based model was

also trained on the target collection.

10For the sake of space, we only consider RLM which shows be�er performance
compared to RPE in query expansion.
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Figure 2: Sensitivity of RLM to the number of expansion terms and the interpolation coefficient (α ), in terms of MAP.
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Figure 3: Sensitivity of RLM to the dimension of embedding

vectors, in terms of MAP.

An interesting observation fromTables 2 and 4 is that the RLMper-

formance (without using pseudo-relevant documents) in Robust

and GOV2 is very close to the RM3 performance, and is slightly

be�er in the GOV2 collection. Note that RM3 needs two retrieval

runs11 and uses top retrieved documents, while RLM only needs

one retrieval run. �is is an important issue in many real-world

applications, since the efficiency constraints do not always allow

them to have two retrieval runs per query.

Parameter Sensitivity. In the next set of experiments, we study

the sensitivity of RLM as the best performing word embedding

model in Table 2 to the expansion parameters. Figure 2a plots

the sensitivity of RLM to the number of expansion terms where

the parameter α is set to 0.5. According to this figure, in both

newswire collections, the method shows its best performance when

the queries are expanded with only 10 words. In the GOV2 collec-

tion, 15 words are needed for the method to show its best perfor-

mance.

Figure 2b plots the sensitivity of the methods to the interpola-

tion coefficient α (see Equation 9) where the number of expansion

terms is set to 10. According to the curves correspond to AP and

Robust, the original query language model needs to be interpolated

with the model estimated using relevance-based word embeddings

11Diaz [10] showed that for precision-oriented tasks, the second retrieval run can be
restricted to the initial rank list for improving the efficiency of PRF models. However,
for recall-oriented metrics, e.g., MAP, the second retrieval helps a lot.
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Figure 4: �e Performance of RLM with respect to different

amount of training data (training queries), in terms ofMAP.

with equal weights (i.e., α = 0.5). �is shows the quality of the

estimated distribution via the learned embedding vectors. In the

GOV2 collection, a higher weight should be given to the original

query model, which indicates that the original query plays a key

role in achieving good retrieval performance in this collection.

We also study the performance of RLM as the best perform-

ing word embedding model for query expansion with respect to

the embedding dimensionality. �e results are shown in Figure 3,

where the query expansion performance generally improves as we

increase the embedding dimensionality. �e performances become

stable when the dimension is larger than 300. �is experiment sug-

gests that 400 dimensions would be enough for the relevance-based

embedding model.

Due to the large number of parameters in the neural networks,

they can require large amounts of training data to achieve good

performance. In the next set of experiments, we study how much

training data is needed for training our best model. �e results

are plo�ed in Figure 4. According to this figure, by increasing the

number of training queries from one million to four million queries,

the performance significantly increases, and becomes more stable

a�er four million queries.

4.3 Evaluation via �ery Classification

In this subsection, we evaluate the proposed embedding models

in the context of query classification. In this task, each query is
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Table 5: Evaluating embedding algorithms via query classi-

fication. �e superscripts 1/2 denote that the improvements

over word2vec/GloVe are significant. �e highest value in

each column is marked in bold.

Method Precision F1-measure

word2vec 0.3712 0.4008

GloVe 0.3643 0.3912

Rel.-based Embedding - RLM 0.394312 0.426712

Rel.-based Embedding - RPE 0.396112 0.429412

assigned to a number of labels (categories) which are pre-defined

and a few training queries are available for each label. �is is a

supervised multi-label classification task with li�le training data.

4.3.1 Data. We consider the dataset that was introduced in KDD

Cup 2005 [22] for the internet user search query categorization task

and was previously used in [41] for evaluating query embedding

vectors. �is dataset contains 800 web queries submi�ed by real

users randomly collected from the MSN search logs. �e queries

do not contain “junk” text or non-English terms. �e queries were

labelled by three human editors. 67 categories were pre-defined

and up to 5 labels were selected for each query by each editor.

4.3.2 Experimental Setup. In our experiments, we performed

5-fold cross-validation over the queries and the reported results are

the average of those obtained over the test folds. In all experiments,

the spelling errors in queries were corrected in a pre-processing

phase, the stopwords were removed from queries (using the IN-

QUERY stopword list), and no stemming was performed.

To classify each query, we consider a very simple kNN-based

approach proposed in [41]. We first compute the probability of

each category/label given each query q and then select the top t

categories with the highest probabilities. �e probability p (Ci |q) is

computed as follows:

p (Ci |q) =
δ ( ~Ci , ~q)
∑
j δ ( ~Cj , ~q)

∝ δ ( ~Ci , ~q) (10)

where Ci denotes the i
th category. ~Ci is the centroid vector of

all query embedding vectors with the label of Ci in the training

set. We ignore the query terms whose embedding vectors are not

available. �e number of labels assigned to each query was tuned

on the training set from {1, 2, 3, 4, 5}. In the query classification

experiments, we trained relevance-based word embedding using

Robust as the collection.

4.3.3 Evaluation Metrics. We consider two evaluation metrics

that were also used in KDD Cup 2005 [22]: precision and F1-

measure. Since the labels assigned by the three human editors

differ in some cases, all the label sets should be taken into account.

�ese metrics are computed in the same way as what is described in

[22] for evaluating the KDD Cup 2005 submi�ed runs. Statistically

significant differences are determined using the two-tailed paired

t-test computed at a 95% confidence level (p −value < 0.05).

4.3.4 Results and Discussion. We compare our models against

the word2vec and GloVemethods trained on the external collections

that are described in the query expansion experiments. �e results

are reported in Table 5, where the relevance-based embedding
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Figure 6: �e Performance of relevance-based embedding

models with respect to different amount of training data

(training queries), in terms of F1-measure.

models significantly outperform the baselines in terms of both

metrics. An interesting observation here is that contrary to the

query expansion experiments, RPE performs be�er than RLM in

query classification. �e reason is that in query expansion the

weight of each term is considered in order to generate the expanded

query language model. �erefore, in addition to the order of terms,

their weights should be also effective for improving the retrieval

performance with query expansion. In query classification, we only

assign a few categories to each query, and thus as long as the order

of categories is correct, the similarity values between the queries

and the categories do not ma�er.

In the next set of experiments, we study the performance of

our relevance-based word embedding models with respect to the

embedding dimensionality. �e results are plo�ed in Figure 5. Ac-

cording to this figure, the performance is generally improved by

increasing the embedding dimensionality, and becomes stable when

the dimension is greater than 400. �is is similar to our observation

in the query expansion experiments. We also study the amount

of data needed for training our models in Figure 6. According to

this figure, at least 4 million queries are needed in order to learn

accurate relevance-based word embeddings. It can be seen from

Figure 6 that RLM needs more training data compared to RPE in

order to perform well, because by increasing the amount of training

data the learning curves of these two models get closer.
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5 CONCLUSIONS AND FUTURE WORK

In this paper, we revisited the underlying assumption in typical

word embedding models, such as word2vec and GloVe. Instead of

learning embedding vectors based on term proximity, we proposed

learning embeddings based on the notion of relevance, which is

the primary objective in many IR tasks. We developed two neu-

ral network-based models for learning relevance-based word em-

beddings. �e first model, the relevance likelihood maximization

model, aims to estimate the probability of each word in a relevance

distribution for each query, while the second one, the relevance

posterior estimation model, classifies each term as belonging to

relevant or non-relevant class for each query. We evaluated our

models using two sets of extrinsic evaluation: query expansion and

query classification. �e query expansion experiments using four

standard TREC collections, two newswire and two large-scale web

collections, suggested that the relevance-based word embedding

models outperform state-of-the-art word embedding algorithms.

We showed that the expansion terms chosen by our models are

related to the whole query, while those chosen by typical word

embedding models are related to individual query terms. �e query

classification experiments also validated these findings and investi-

gated the effectiveness of our models.

In the future, we intend to evaluate the learned embedding mod-

els in other IR tasks, such as query reformulation, query intent

prediction, etc. We can also achieve more accurate relevance-based

embedding vectors by considering the clicked documents for train-

ing query, instead of or in addition to the top retrieved documents.
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