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ABSTRACT

We study the problem of static index pruning in a renowned
divergence minimization framework, using a range of diver-
gence measures such as f -divergence and Rényi divergence
as the objective. We show that many well-known diver-
gence measures are convex in pruning decisions, and there-
fore can be exactly minimized using an efficient algorithm.
Our approach allows postings be prioritized according to the
amount of information they contribute to the index, and
through specifying a different divergence measure the con-
tribution is modeled on a different returns curve. In our ex-
periment on GOV2 data, Rényi divergence of order infinity
appears the most effective. This divergence measure signif-
icantly outperforms many standard methods and achieves
identical retrieval effectiveness as full data using only 50%
of the postings. When top-k precision is of the only concern,
10% of the data is sufficient to achieve the accuracy that one
would usually expect from a full index.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval
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Static index pruning; f -divergence; Rényi divergence

1. INTRODUCTION
The study on inducing succinct data representation has

a long history in the domain of information retrieval. In-
spired by the need of offering search on handheld devices
with limited storage space, Carmel et al. [9] motivated a
technique, called static index pruning, that aims at creat-
ing a condensed version of an inverted index such that there
is little difference from the user perspective in the top k
returned results. Since an inverted index is essentially a
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warehouse of links between terms and documents, it makes
sense to see this as a problem of choosing the most useful
links, i.e., signals or features that best distinguish a relevant
document from non-relevant ones, allowing the creation of
an effective condensed or summarized index. Many early ef-
forts took this perspective and have succeeded in applying
relevance measures and heuristics common in information
retrieval to this problem [4, 7, 9]. Some later developments
used a log-based approach, exploiting session logs to un-
cover regularity in user queries and locate information that
is likely to be reused [2, 25]. Due to this success, the no-
tion of static index pruning as a cache problem has become
prevalent. Although some progress has been made in ex-
ploring more sophisticated abstractions [5, 26], a dedicated
theory for this task has not been described.

The problem of static index pruning appeals to theoreti-
cians for it being a related process to relevance estimation.
Instead of asking how one estimates the degree of relevance
in a posting, it asks if the postings can be ordered in a way
such that the least informative part can be thrown away
as necessary. This perspective is valuable since it outlines
an important task that people recently have started to look
at, which is to create highly succinct summaries about large
data in an unsupervised fashion.

In a recent paper by Chen and Lee [10], it has been shown
that static index pruning has a connection to probabilistic
inference, a well-motivated problem solved usually by mini-
mizing relative entropy [17]. Their work outlined a mathe-
matical foundation for static index pruning, but it also came
with some caveats that makes exact inference difficult and
hinders further implications. Several interesting research
questions were left unsettled due to this difficulty. For in-
stance, can the optimization framework generalize over a
broader family of divergences, such as f -divergence or the
famous Rényi divergence? Can the analysis be extended to
model multiple-term queries? Does removing term posting
lists entirely from the index lead to decreased performance?
None of these questions can be easily answered without us
first being able to develop new mathematical tools.

In this paper, we introduce a new mathematical analysis
to address these issues. We built on top of the existing diver-
gence minimization framework for static index pruning, but
used a different way to describe the optimization problem.
We show that both f -divergence and Rényi divergence can
be exactly minimized under this formulation, and the ex-
act solution can be efficiently computed in time complexity
O(|D|L logL), where |D| is the total number of documents
and L the maximum document length in the index. The
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same analysis can also be extended to model multiple-term
queries. We show that, with suitable assumptions (bag-of-
words), the entire Rényi divergence family can be exactly
solved for up to infinite terms. This problem is readily solv-
able even in the presence of billions of variables, allowing
us to avoid a numerical solution impractical for a problem
of this scale. We also seek comparison with other strong
results in the application domain. Our empirical results on
the GOV2 data shows that Rényi divergence helps preserv-
ing top-k precision and document ranking. Our approach
outperforms many standard methods of the task and com-
pares well to the strong baseline in top-k precision.

The rest of paper is structured as follows. Section 2 covers
some backgrounds of static index pruning. In Section 3,
we develop a convex analysis that has eventually led to an
exact algorithm for minimizing all the divergence measures
mentioned in this work. Section 4 covers the experimental
results. Our findings are discussed in Section 5 and we give
out concluding remarks in Section 6.

2. BACKGROUND
Static index pruning first appeared as a theoretical prob-

lem in Carmel et al. [9] and later found application in web
search [7, 14]. It is a technique that removes less important
postings permanently from an index. Initially developed to
mitigate efficiency issues caused by operating a large index,
static index pruning later has grown into a wide range of
studies that focus on reducing the seemingly inevitable per-
formance loss. To date, many successful approaches have re-
lied on posting importance measures, including impact [7,9]
or odds ratio in the probability ranking principle [5]. Some
later efforts have based this measurement on more sophisti-
cated techniques, such as statistical hypothesis testing [26],
query-view methods [2], or information theory [10,11].

Our approach most closely resembles the work of Chen
and Lee [10] in the way the pruning problem is framed.
While we use relative entropy minimization (i.e., Kullback’s
principle of minimum cross-entropy) much the same way
as in the previous work to infer truncated models, we rely
on a different generative process that eventually leads to
document-centric pruning strategies. This departure helps
to avoid many modeling issues previously associated with
term-centric formulations. Our pruning problems are suf-
ficiently simple and can be solved exactly using analytic
techniques alone. Our approach is free of approximations
such as surrogates or assumptions about uniform priors and
probability renormalization, and can be easily extended to
model multiple-term queries. These improvements in mod-
eling make our results less restrictive and more practical.

3. DIVERGENCE-BASED METHOD
We start this analysis by treating inverted indexes in the

context of language modeling [23]. We will view an inverted
index as a joint probability measure over query terms Q =
〈T1, T2, . . . , Tn〉 and document D. By saying an index is a
joint probability measure, we mean that an index has the
ability to produce a probability value p(Q,D) for any given
pair of Q and D that allows for document ranking. Here, n
is said to be the cardinality of query.

A typical language modeling approach would suggest the
following generative structure: One first chooses a docu-
ment D and then makes n independent draws T1, T2, . . . , Tn

from the discrete distribution θD that represents the lan-
guage model for document D.

D ∼ Uniform(1, |D|),
Tk ∼ Discrete(θD) for k = 1 . . . n.

An inverted index represented this way can also be seen as
a mixture of document language models. It is then straight-
forward to rank documents based on the joint likelihood.
More advanced variants also exist that take document pri-
ors, term dependency, or proximity into account. See Zhai
and Lafferty [28] for a complete treatment.

Ideally, the support of this mixture would cover the set of
all possible queries and all documents. But practically this
would break down to just all the postings in the index, each
of the form (t, d). So if we are asked to induce a concise
version of this mixture, it would be reasonable to just find
a subset of given size from these postings.

Let us write the original index as a measure p, and say a
fraction ρ of the postings needs to be removed from p in order
to produce the concise version q. Then we define the domain
of q as Q(ρ), the set of all probability measures to which
only part of the original postings (as indicated by fraction
1 − ρ) are made available. We make the usual generative
assumption that a joint model has a document prior and a
likelihood component, e.g., p(t, d) = p(d)p(t|d) and q(t, d) =
q(d)q(t|d). The document prior p(d) does not need to be
uniform, though it has to be unique, i.e., p(d) = q(d).

With this definition, it is straightforward to describe static
index pruning as a search problem in the probability space.
One standard approach to find the best measure is through
relative entropy minimization [17]:

minimize D(q||p)
subject to It,d ∈ {0, 1} for all (t, d)

∑

t,d It,d = (1− ρ)N

q ∈ Q(ρ)

(1)

with the last line expands into the following:

q ∈ Q(ρ) ⇔ q(t1:n|d) =
p(t1:n|d)

∏

j Itj ,d
∑

t′
1:n

p(t′1:n|d)
∏

j It′j ,d

. (2)

The objective D(q||p) is the Kullback-Leibler (KL) diver-
gence from q, the probability measure to be induced, to p,
the original. This divergence can be replaced by other di-
vergence measures, as we shall briefly show. Each indicator
It,d represents a binary choice of whether posting (t, d) will
be included in q or not. For any given fraction ρ, exactly
(1 − ρ)N such indicators have to be “turned on” (N is the
total number of postings.) The binary choices 〈It,d|∀t, d〉 as
a whole should create a truncated probability measure q out
of the measure p by limiting access to part of the support.
Technically, the support still covers all postings, but those
not selected to enter the new index, i.e., It,d = 0, would re-
ceive zero probability in measure q.1 After truncation, the
measure q needs to be renormalized as in (2) as its total
probability mass may no longer sum to one. The denomina-
tor in (2) will hereafter be denoted as Zd for brevity.

To sum up, comparing this formulation with that of Chen
and Lee [10], it is less restrictive and free of approximation.
Further exploration on divergence measures and query car-
dinality is thus made feasible.

1We disregard smoothing at the modeling stage as it would
make the problem complicated.

152



3.1 f-Divergence and Rényi Divergence
For many decades, researchers in information theory have

sought interesting ways to generalize KL divergence [13,18,
20, 24]. Many well-known measures, such as Hellinger’s dis-
tance or variational distance, are found related and can be
used in place of ordinary Kullback-Leibler divergence in in-
ference problems such as (1). In this paper, one of the focus
will be on applying these results to our problem. For the
choice of divergence measures, we will mainly look at two
families: f -divergence and Rényi divergence of order α.

The f -divergence is independently rediscovered many times
in the past for generalizing KL divergence [13, 20]. In our
notation, it is written as:

Df (q||p) =
∑

t1:n,d

p(t1:n, d)f

(

q(t1:n, d)

p(t1:n, d)

)

, (3)

where f is a convex function such that f(1) = 0. A broad
range of divergence measures can be modeled this way via
different definitions of f . Some of its special cases, such as
χ2-divergence, Hellinger’s distance, and variational distance
(or total variation), are given as follows [18].

Kullback-Leibler divergence f(x) = x log x
Variational distance f(x) = |1− x|
Hellinger’s distance f(x) = (

√
x− 1)2

χ2-divergence f(x) = (x− 1)2

Rényi divergence of order α comes from another indepen-
dent attempt to generalize the KL divergence. This family
is parametrized via a positive real number α. It was intro-
duced in Alfred Rényi’s seminal work [24], in the following
form:

Dα(q||p) =
1

α− 1
log





∑

t1:n,d

q(t1:n, d)
αp(t1:n, d)

1−α



 . (4)

Rényi divergence is equivalent to KL divergence when α →
1. Setting α = 2 would lead to the logarithm of the χ2-
divergence. It is worth noting that one can actually take α
to infinity, and by doing that we will get a special closed
form for Rényi divergence of order infinity [27]:

D∞(q||p) = log sup
t1:n,d

q(t1:n, d)

p(t1:n, d)
. (5)

3.2 Analysis
The problem described in (1) is overwhelmingly large be-

cause the number of variables can easily exceed billions on
any web retrieval system. A problem of this scale is infea-
sible, so further work is needed to simplify the objective.
In this analysis, we basically look at two things: convexity
and relations between divergence measures. We first check
whether the objective in (1) is convex. The objective can
be exactly minimized if it is convex [16], or otherwise effi-
cient inference would not seem feasible. Once the convexity
is established, we check if the measure is analytically re-
lated to some other measures that we have analyzed. As
we shall cover later, some divergence measures are related
to themselves in lower cardinality. This interesting property
allows us to solve high-cardinality problems using solutions
to low-cardinality ones.

Divergence Analytic Form

KL(1) −∑d p(d) log
(
∑

t′ It′,dp(t
′|d)
)

VD(1) −
∑

d p(d)
(
∑

t′ It′,dp(t
′|d)
)

Hellinger(1) −
∑

d p(d)
(
∑

t′ It′,dp(t
′|d)
)1/2

χ2-div
(1) ∑

d p(d)
(
∑

t′ It′,dp(t
′|d)
)−1

Rényi(1)α (1 < α < ∞)
∑

d p(d)
(
∑

t′ It′,dp(t
′|d)
)1−α

Rényi(1)∞ supd

(
∑

t′ It′,dp(t
′|d)
)−1

Table 1: Analytic forms for cardinality n = 1.

Convexity for Cardinality n = 1. It is known that f -
divergence and Rényi divergence are convex in probability
measures p and q, but in pruning decisions 〈It,d|∀t, d〉 the
convexity is not yet established.
Let us start with the simplest case where query cardinality

n equals 1. In this case, (3), (4), and (5) become:

Df (q||p) =
∑

t,d

p(t, d)f

(

It,d

Zd

)

,

Dα(q||p) =
1

α− 1
log
∑

t,d

p(t, d)

(

It,d

Zd

)α

,

D∞(q||p) = log sup
t,d

It,d

Zd
.

(6)

Note that Zd also falls back to a simpler form:
∑

t′ p(t
′|d)It′,d.

We shall now establish that, with the following two lem-
mas, that (1) is a convex programming problem under f -
divergence and Rényi divergence for n = 1. In the first
lemma, we will directly prove that f -divergence is jointly
convex in pruning decisions, while in the second we will not
be able to do so due to the presence of a logarithm func-
tion. Instead, we show that minimizing Rényi divergence
has an equivalent surrogate that is convex. In other words,
we get the same exact solution by minimizing the inside of
logarithm.

Lemma 1 (Convexity). Given Zd > 0 for all d, Df (q||p)
defined in (6) is jointly convex in pruning decisions 〈It,d|∀t, d〉
for any convex function f with f(1) = 0.

Lemma 2 (Surrogate Convexity). Given Zd > 0 for

all d, minimizing Dα(q||p) in (6) has an equivalent surrogate

that is jointly convex in 〈It,d|∀t, d〉 for α > 1.

Proofs for these two lemmas are given in the appendix.
Now, with a bit of algebra, we are able to write out a sim-
plified form for each of these divergence measures. These
equations are given in Table 1. Sharp-eyed reader may no-
tice the similarities between these equations. We shall dis-
cuss how this can be exploited to develop a general algorith-
mic solution in a later subsection regarding finding optimal
allocation.

Convexity for Cardinality n > 1. When query cardinality
n is greater than 1, term dependency can make the problem
very hard to solve. Generally, when n > 1, minimizing (1)
under both divergence families leads to a sophisticated ge-
ometric programming problem, for which we are not aware
of any efficient solution in the billion-variable scale.

This problem can however be alleviated with the term
independence (”bag-of-words”) assumption, which is to let
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Divergence Analytic Form for n > 1

KL(n) KL(1)

VD(n) Not convex

Hellinger(n) VD(1) for n = 2; Not convex otherwise

χ2-div
(n)

Rényi
(1)
n+1

Rényi(n)
α Rényi

(1)
nα−n+1 for 1 < α < ∞

Rényi(n)
∞ supd

(
∑

t′ It′,dp(t
′|d)
)−n

Table 2: Relations between divergences of different
cardinalities. KL divergence and Rényi divergence
can both be solved for arbitrarily high cardinalities.

p(t1:n|d) =
∏

j p(tj |d). We repeated the convex analysis as
in n = 1 under this assumption, and found each measure
for n > 1 fits into one of the following classes: (i) The mea-
sure is convex and can reduce to itself or other measures in
cardinality 1, with examples including Kullback-Leibler di-
vergence, Rényi divergence, and χ2-divergence. Divergence
measures in this class can be solved for arbitrary cardinal-
ity and therefore provide the greatest flexibility in modeling
user queries; (ii) The measure is not convex on high cardinal-
ity, e.g., both variational distance for n ≥ 2 and Hellinger’s
distance for n > 2 are not convex. In this case, the exact
solution cannot be efficiently computed.

More detailed analyses are given in the appendix. Our full
result is summarized in Table 2. Among all these measures,
we find that Kullback-Leibler divergence, Rényi divergence,
and χ2-divergence the most interesting since they can be
solved for arbitrary cardinality and therefore can be used
to model arbitrary-length queries properly. Variational dis-
tance and Hellinger’s distance fall short on this flexibility.
In later section, we shall see how this theoretical limit is
reflected on practical performance.

3.3 Optimal Allocation
Having established the convexity, we now turn to develop

algorithmic solutions for the divergence measures. A com-
mon pattern that we observed in Table 1 is all these mea-
sures (except Rényi divergence of order infinity) are of the
following format:

∑

d

p(d)G

(

∑

t

It,dp(t|d)
)

, (7)

where G(x) is some convex function. We call this G a
gain function. Figure 1 (left) summarizes this for all the
divergences in discussion. For divergence measures in the f -
family, this function is simply G(x) = (1−x)f(0)+xf(1/x),
for x > 0. For the Rényi family, we have G(x) = x1−α−1 for
x > 0, α > 1. Note that for f -divergence the gain function
has a property that G(1) = 0; we make this consistent with
Rényi divergence by adding a trailing −1.

We found that minimizing the objective (7) under the con-
straint (2) is equivalent to solving a multiple-resource allo-
cation problem on convex returns [16]. It turns out that,
in this problem, our objective is to minimize a mixture of
document-level pay-offs, which is directly connected to the
gain function G(·). Figure 1 (right) has a summary plot
in which we print all these gain functions in different line
patterns and those associated with Rényi divergence in dif-
ferent colors. From the plot, one can easily tell that all these
measures appear to be convex, non-increasing monotone on

(0, 1] (“diminishing returns”). To minimize a single pay-off
on any document d, it suffices to order the postings in de-
scending order of probability p(t|d) and have them enter the
index consecutively until the budget runs out. The same
idea also applies to a mixture of pay-offs.

General Solution. Let us denote a term t in some docu-
ment d as t[j] by its rank j in descending order of p(t|d). For
any posting (t[k], d) to enter the index, postings in document
d with higher probabilities (t[1], d), (t[2], d), . . . , (t[k−1], d) have
to be included first. Now by allowing posting (t[k], d) to enter
the final index, we gain this much in the overall objective:

p(d)

[

G

(

k
∑

i=1

p(t[i]|d)
)

−G

(

k−1
∑

i=1

p(t[i]|d)
)]

(8)

Note that this value is negative. To minimize the overall
gain, it suffices to go from some steady state and distribute
the remaining budget to documents in a iterative fashion
using the following greedy algorithm.

input: threshold ǫ
1 for d ∈ D do
2 Sort terms in descending order of p(t|d)
3 for k = 1, . . . , n do
4 Compute ∆(t[k], d) according to (8)
5 Remove posting (t[k], d) if |∆(t[k], d)| < ǫ

Algorithm 1: The general algorithm for computing opti-
mal allocation under f -divergence and Rényi divergence.

Algorithm 1 computes the optimal allocation of (1− ρ)N
index entries that minimizes the divergence between the
pruned and the full indexes. This algorithm has a time com-
plexity of O(|D|L logL) where |D| is the total number of doc-
uments in the collection and L is the maximum document
length. This algorithm has a linear-time variants for varia-
tional distance, as given in Algorithm 2. These algorithms
can all be linked to the result in Fox [15] by establishing the
mapping between G and the function φj . Interested readers
are referred to Ibaraki and Katoh [16] for more details.

input: threshold ǫ
1 for d ∈ D do
2 for t ∈ posting(d) do
3 Remove posting (t, d) if p(d)p(t|d) < ǫ

Algorithm 2: Linear-time variant for variational distance.

Rényi Divergence of Order Infinity. To compute the al-
location for Rényi divergence of order infinity on arbitrary
cardinality n, replace (8) in Algorithm 1 with the following:

(

k
∑

i=1

p(t[i]|d)
)−n

. (9)

Note that, since p(d) is not involved in this equation, set-
ting document priors would have no effect to this divergence
measure. Given this condition, one can easily show that (9)
is actually rank invariant for all n > 0. This means that
Rényi divergence of order infinity can be solved for an arbi-
trarily high cardinality and the solution would still be the
same as that of cardinality 1.
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Divergence Gain G(x)

f -divergence (1− x)f(0) + xf(1/x)
KL divergence − log x
Variational distance 1− x

Hellinger’s distance 1− x1/2

χ2-divergence x−1 − 1
Rényi divergence (1 < α < ∞) x1−α − 1 0.0

0.5

1.0

1.5

2.0

0.00 0.25 0.50 0.75 1.00

Cumulative prob

G
a

in

Alpha

2

3

Divergence measure

Hellinger distance

KL divergence

Renyi divergence

Variational distance

X^2 divergence

Figure 1: Gain functions (left) and plots (right) for many well-known divergence measures.

Title queries 50% 70% 90%
MAP P20 J20 MAP P20 J20 MAP P20 J20

Full index 0.253 0.464 — 0.253 0.464 — 0.253 0.464 —
KL 0.234 0.465 0.826 0.210 0.461 0.664 0.143 0.357 0.360
Hellinger 0.208 0.453 0.800 0.162 0.418 0.586 0.074 0.238 0.237
Variational 0.117 0.382 0.565 0.059 0.301 0.275 0.015 0.129 0.078
χ2-divergence 0.245 0.474 0.799 0.232 0.467 0.668 0.181 0.437 0.373
Renyi, α = 50 0.252 0.476 0.743 0.244 0.485 0.603 0.198 0.467 0.325
Renyi, α → ∞ 0.253 0.478 0.741 0.245 0.485 0.598 0.198 0.468 0.323

Table 3: Retrieval performance of experimental runs on Terabyte ’06 title queries, measured at prune ratios
50%, 70%, and 90%. Runs that outperform full index are underlined and best results printed in boldface.

4. EXPERIMENTS
Totally two sets of pruning experiments were conducted in

this study. Our experiments were carried out on the GOV2
collection [12] using TREC 2006 Terabyte track data [8].
The GOV2 collection is a standard collection for various
web-related retrieval tasks. It has 25.2 million documents
and is roughly 426GB in size. We used the Indri toolkit2

to create indexes and develop pruning algorithms. Standard
preprocessing steps such as stemming and stopword removal
were applied using the InQuery stoplist and porter stemmer.

We used both ad-hoc and efficiency topics as it is inter-
esting to see how pruning algorithms respond to different
types of queries. Ad-hoc topics in the Terabyte track are
carefully selected questions with proper annotation, so this
set is suitable for testing general retrieval performance. Effi-
ciency topics are unannotated queries collected from session
logs. Since these are real queries submitted by users, test-
ing on top of this set gives us a better idea how pruning
algorithms work “in the wild.” For ad-hoc task we use all
annotated topics 701-850, and for efficiency task we used
the first 1,000, which are topics 1-1000. We used only title
queries for both tasks.

For comparison, we chose five reference methods: term-
based pruning [9], uniform pruning [9,10], document-centric
pruning [7], popularity-based pruning [2,21], and two-sample
two proportion (2N2P) test [26].3 These methods implement
different ideas in static index pruning and their performance
have been extensively studied. Some of them such as term-
based pruning and popularity-based pruning are known as
standard methods of the task.

2http://www.lemurproject.org/indri.php
3We also tested two other methods, probability-ranking
principle [5] and information preservation [11], but due to
space limit these results are not included in this paper.

We use BM25 wherever applicable in post-pruning re-
trieval and in pruning (with the 2N2P test being the only
exception) [1] to strengthen the baseline performance. De-
fault parameters in the Indri toolkit are used: k1 = 1.25 and
b = 0.75. For term-based pruning, we used the top-k ver-
sion and set k = 10. For document-centric pruning, we used
Method 2 and set λ = 1 − ρ. To set up popularity-based
pruning, we used term frequencies from the AOL query
log [22] to compute term popularities. For the 2N2P test, we
used only the Z-score version without implementing power
analysis and also updated collection term frequencies. All
other details were implemented based on standard settings.

We used a uniform prior p(d) in our experiment. To es-
timate p(t|d), we tested various retrieval methods, includ-
ing BM25 and language modeling with both Dirichlet and
Jelinek-Mercer smoothing. As BM25 is in general more ef-
fective, to prevent clutter we will not discuss the results for
language modeling in this paper. Note that, since the BM25
scores are not valid probabilities, we use a softmax function
to convert these scores as if they were coming out from a
multinomial logistic regression model [3, p. 198]:

exp (BM25(t, d))
∑

t′∈d exp (BM25(t′, d))
. (10)

This estimate is not ideal since the “posterior” produced has
little to do with the generative process. It is nevertheless
a convenient way to incorporate non-probabilistic methods
into our framework; further justification on its validity is
beyond the scope of this paper.

Retrieval performance is measured at three prune ratios,
50%, 70%, and 90%. In all the experimental runs, prune ra-
tio is controlled by using sample quantile [10] with reservoir
sampling to find the right threshold ǫ. This estimation error
was empirically bounded to within 0.005%. Given the same
original index to start with, a pruning method is deemed
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Title queries 50% 70% 90%
MAP P20 J20 T (s) MAP P20 J20 T (s) MAP P20 J20 T (s)

Full index 0.253 0.464 — 101.7 0.253 0.464 — 101.7 0.253 0.464 — 101.7
2N2P test 0.239 0.467 0.714 40.3 0.203 0.434 0.535 18.3 0.076 0.248 0.198 2.2
Popularity-based 0.223 0.417 0.780 89.4 0.189 0.365 0.574 65.4 0.077 0.161 0.199 16.3
Uniform 0.231 0.445 0.760 33.5 0.187 0.376 0.566 14.4 0.110 0.241 0.273 1.8
Term-based, k = 10 0.218 0.457 0.853 67.9 0.187 0.441 0.675 46.8 0.109 0.311 0.350 14.7
Document-centric 0.253 0.478 0.743 54.7 0.244 0.485 0.602 38.8 0.198 0.465 0.325 16.1
KL 0.234 0.465 0.826 64.9 0.210 0.461 0.664 41.7 0.143 0.357 0.360 10.6
χ2-divergence 0.245 0.474 0.799 59.9 0.232 0.467 0.668 38.2 0.181 0.437 0.373 13.2
Renyi, α = 50 0.252 0.476 0.743 54.4 0.244 0.485 0.603 37.4 0.198 0.467 0.325 15.5
Renyi, α → ∞ 0.253 0.478 0.741 54.9 0.245 0.485 0.598 37.0 0.198 0.468 0.323 15.6

SD queries 50% 70% 90%
MAP P20 J20 T (s) MAP P20 J20 T (s) MAP P20 J20 T (s)

Full index 0.264 0.491 — 516.9 0.264 0.491 — 516.9 0.264 0.491 — 516.9
2N2P test 0.242 0.481 0.722 190.7 0.204 0.442 0.537 81.3 0.076 0.249 0.188 7.6
Popularity-based 0.232 0.439 0.781 389.6 0.198 0.375 0.581 277.4 0.080 0.170 0.194 56.0
Uniform 0.238 0.461 0.755 141.3 0.192 0.389 0.576 50.4 0.111 0.246 0.262 3.5
Term-based, k = 10 0.223 0.474 0.852 330.3 0.188 0.451 0.664 212.9 0.107 0.312 0.320 61.7
Document-centric 0.259 0.499 0.743 269.3 0.248 0.507 0.588 192.2 0.200 0.472 0.306 73.2
KL 0.240 0.476 0.842 313.1 0.211 0.470 0.678 181.2 0.137 0.340 0.337 39.3
χ2-divergence 0.252 0.487 0.824 296.9 0.234 0.481 0.677 177.5 0.180 0.441 0.354 51.9
Renyi, α = 50 0.258 0.498 0.750 269.1 0.248 0.506 0.592 183.4 0.200 0.472 0.306 71.3
Renyi, α → ∞ 0.259 0.498 0.740 264.9 0.249 0.508 0.584 182.2 0.200 0.474 0.303 71.9

Table 4: Overall comparison with reference methods on Terabyte ’06 title queries (top) and SD queries
(bottom). Performance is measured at prune ratios 50%, 70%, and 90% where query execution is also timed.
Runs do better than or equally well to full index are underlined; boldface indicates the best result.

better if the produced index delivers better result. To eval-
uate retrieval performance, we used the following measures:
mean average-precision (MAP), precision-at-20 (P20) and
top-20 Jaccard coefficient (J20). MAP and P20 measure
how well one algorithm does in preserving postings that are
relevant. J20 measures the degree of overlap in top 20 doc-
uments between retrieval results before and after pruning,
commonly used as a proxy of precision-based measures when
relevance judgments are not available. Note that other rank
coefficient measures such as Kendall’s tau may also be used
in place of J20. These measures were selected mainly for
consistency with the existing work.

4.1 Ad-Hoc Task
In the first task, we used 150 ad-hoc topics in the test. Be-

sides title queries, we also managed to perform pruning ex-
periments on sequential dependence (SD) queries [19]. Our
purpose is to see how pruning algorithms respond to the
change in term dependencies. In our case, the change is
from full independence to sequential dependence. Although
setting up SD queries on top of BM25 is unusual, it did
achieve better performance as we had expected.

The result for our experimental runs on title queries is
given in Table 3. Two variants of Rényi divergence are re-
ported here: α = 50 and α → ∞(order infinity). Among
all the experimental runs, we found that Rényi divergence
generally does the best, χ2-divergence the second, and KL
divergence the third. This seems to suggest that, for Rényi
divergence, larger α tends to provide a better returns curve.

An overall comparison with reference methods is sum-
marized in Table 4 with title queries on the top and SD
queries on the bottom. Hellinger’s distance and variational

distance were not included in this comparison as the per-
formance is below standard. Among the reference methods
we tested, document-centric pruning does the best on MAP
and P20. It outperforms all other reference runs by a large
margin. The runner-up is term-based pruning, followed by
2N2P test, uniform pruning, and popularity-based pruning.
The 2N2P test performed well on MAP at low prune ratio.
In our test, the performance of uniform pruning is on par
with term-based pruning on MAP, which is consistent with
the previous results [10]. Popularity-based pruning also ap-
peared comparable, but at high prune ratio its performance
is just disappointing. Our result suggests that popularity-
based method has no advantage in the ad-hoc task, although
its parameters was trained on a very sizable source.

From Table 4, all four proposed methods do fairly well
with precision-based measures. Rényi divergence of order
infinity outperforms all the baseline methods on MAP and
P20; the other three measures also achieve good perfor-
mance but do not appear to surpass the strong baseline. On
J20, KL divergence and χ2-divergence both appear compa-
rable to term-based method. We found that, in the Rényi
family, the ones with small alpha (KL divergence and χ2-
divergence) tend to do better on J20 and the ones with
large alpha (α = 50 and α → ∞) do better on MAP and
P20. Among all the proposed methods, only Rényi diver-
gence managed to achieve comparable performance on MAP
and P20 to the strong baseline. For testing statistical sig-
nificance, we ran a 4-way ANOVA upfront followed by a
Tukey’s HSD test, whose result is given in Table 5. All ef-
fects in ANOVA come back significant for p < 0.001. The
Tukey’s test suggests that Rényi divergence and document-
centric pruning significantly outperform all the other meth-
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Effect DF F η2
p

MAP

Query Type 1 15.1 .0015
Method 8 96.6 .0693
Prune Ratio 3 1262.0 .2673
Topic 147 306.9 .8129

P20

Query Type 1 30.8 .0030
Method 8 82.2 .0596
Prune Ratio 3 355.4 .0931
Topic 147 197.9 .7371

MAP Mean Grp P20 Mean Grp
Rényi, α → ∞ .2419 a.... Rényi, α → ∞ .4865 a...

Document-centric .2416 a.... Document-centric .4858 a...

Rényi, α = 50 .2415 a.... Rényi, α = 50 .4853 a...

χ2-divergence .2318 .b... χ2-divergence .4709 a...

KL .2130 ..c.. KL .4434 .b..

Popularity-based .2073 ..cd. Term-based .4278 .bc.

Uniform .2034 ...de 2N2P test .4123 ..cd

2N2P test .1959 ....e Uniform .3991 ...d

Term-based .1949 ....e Popularity-based .3940 ...d

Table 5: 4-way ANOVA (left) and Tukey’s HSD result (right).

Efficiency queries 50% 70% 90% Index Status at 90%
J20 T (s) J20 T (s) J20 T (s) PruneT (s) PL Kept (%) Avg Size

Full index — 990.49 — 990.49 — 990.49 — 100.0% 128.6
2N2P test 0.605 365.94 0.426 148.29 0.128 15.07 2858.09 100.0% 12.9
Popularity-based 0.772 815.23 0.515 643.52 0.182 209.14 2382.56 0.6% 2126.4
Uniform 0.646 272.07 0.450 106.51 0.178 6.12 3188.70 55.4% 23.2
Term-based 0.753 639.65 0.563 419.35 0.296 138.49 2694.58 100.0% 12.7
Document-centric 0.639 548.52 0.487 311.22 0.235 128.71 6987.10 40.9% 31.8
KL 0.730 545.84 0.538 324.64 0.235 85.96 6541.08 36.0% 35.8
χ2-divergence 0.707 622.85 0.546 317.95 0.251 102.88 6767.16 37.9% 34.0
Renyi, α = 50 0.642 511.48 0.490 306.96 0.236 128.26 8240.08 40.4% 31.9
Renyi, α → ∞ 0.637 551.26 0.484 347.12 0.233 130.40 6830.29 40.6% 31.7

Table 6: Overall comparison with reference methods on 1,000 Terabyte ’06 efficiency queries. Retrieval
performance is evaluated using J20 as the sole indicator since relevance judgments are not available; pruning
(PruneT) and query execution (T) are both timed and reported. Runs do better than or equally well to full
index are underlined; boldface indicates the best result. Note that pruning time for popularity-based method
does not include the time needed to preprocess query logs and is only indicative.

ods both on MAP and P20 (on P20 χ2-divergence is also
in the leading group). Rényi divergence appears to have
a slight advantage over document-centric pruning, but the
improvement is not significant.

The performance of document-centric pruning has raised
some concerns. We believe that its effectiveness has been
previously overlooked, since many studies either compared
with the version with the KLD score function, which is infe-
rior to our implementation, or did not replicate the result at
all. According to our experiments, which cover many recent
approaches, document-centric pruning may currently be the
best pruning strategy for preserving top-k precision.

Based on all these findings, we conclude that the proposed
divergence-based methods are effective in producing quality
pruned indexes, and their performance is among the best
on the GOV2 data. One thing worth noting is that on ti-
tle queries with Rényi divergence, we delivered better P20
scores than on the full index at all prune ratios up to 90%.
On SD queries the same method delivered better P20 results
for prune ratios up to 70%.

4.2 Efficiency Task
We conducted the second experiment on the efficiency task

data. This is to see how pruning algorithms react to more
realistic query topics. In the experiment, we tested each
pruning method against the first 1,000 efficiency topics. As
relevance judgments are not available, we had to rely on J20
as the sole performance indicator. Note that one caveat with
this experimental setting is that J20 can be optimistic and
does not reliably reflect true retrieval performance, as can

be seen in the result of our first experiment. Nevertheless,
without relevance judgments it is perhaps the best proxy
measure to the true performance.

We also conducted timing experiments on a dedicated
server with a 3.30 GHz Intel Core i5-2500 CPU (4 cores) and
16GB RAM. We report time needed to produce the pruned
index (PruneT), and query execution time (T) over the en-
tire set of 1,000 topics. Note that PruneT is only indicative
because it was an one-off measurement; we did not make a
second timing pass because pruning is very costly. Query
execution time is however properly measured in a two-pass
timing procedure to isolate possible caching effects.

The result is given in Table 6. We only report PruneT for
90% prune ratio for simplicity. On J20, popularity-based
method works the best at 50% prune ratio, but as prune
ratio increases term-based pruning tends to deliver better
performance. Other reference methods are not effective on
J20. Among the experimental runs, J20 favors more towards
KL divergence but at high prune ratio Rényi divergence also
does equally well. Overall, term-based pruning delivers the
best performance on J20.

The timing result on PruneT (pruning time, in seconds)
confirms that term-centric methods, e.g., the 2N2P test,
popularity-based, uniform, and term-based, are more effi-
cient to run. Among all these methods, Rényi divergence
(the one of finite order) would be the most expensive, since
its gain function has a power component that takes more
time to compute. The others in the document-centric camp
appear roughly comparable on pruning time. On query exe-
cution time T (in seconds), uniform pruning is the fastest in
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6. CONCLUSIONS
In this paper, we provide a thorough study on a wide range

of divergence measures and their use on static index prun-
ing. We developed a set of theoretical analyses on the im-
proved divergence minimization framework. Our work has
paved the way for practical implementation of optimal prun-
ing strategies for large-scale nonparametric models such as
inverted indexes. We have also uncovered interesting effects
that different divergence measures and cardinality settings
may have on the solution quality. The analysis of cardi-
nality suggests that using Rényi divergence of order infinity
in static index pruning delivers the best performance across
different query cardinality settings, which is confirmed em-
pirically with extensive experiments.

For future work, one possible direction would be to use
the returns curves of divergence measures to assign term
weights. This technique may be directly applied to other
problems such reranking or summarization. As static index
pruning relies heavily on term weighting schemes (i.e., score
functions) to estimate posting importance, it is worthwhile
to explore the relationship between the two.
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APPENDIX

Convexity

In this section, we outline the proofs of Lemma 1 on convex-
ity of f -divergence and Lemma 2 on convexity of a surrogate
of Rényi divergence.

Lemma 1 (Convexity). Given Zd > 0 for all d, Df (q||p)
defined in (6) is jointly convex in pruning decisions 〈It,d|∀t, d〉
for any convex function f with f(1) = 0.

Proof. Let us split the support of the summation and
organize. We have:

Df (q||p) =
∑

t,d

p(t, d) [(1− It,d)f(0) + It,df(1/Zd)]

=
∑

d

p(d) [(1− Zd)f(0) + Zdf(1/Zd)] .
(11)

The term Zdf(1/Zd) is convex in Zd because it is a special
type of perspective function [6]. Since Zd is affine in pruning
decisions, this proof follows.

Lemma 2 (Surrogate Convexity). Given Zd > 0 for

all d, minimizing Dα(q||p) in (6) has an equivalent surrogate

that is jointly convex in 〈It,d|∀t, d〉 for α > 1.

Proof. Since logarithm function is monotone, when α >
1, minimizing Dα(q||p) as in (6) is equivalent to minimizing

∑

t,d

p(t, d)

(

It,d

Zd

)α

=
∑

d

p(d)Z1−α
d , (12)

which is jointly convex in pruning decisions 〈It,d|∀t, d〉.

Analysis for Cardinality n > 1

In the following paragraphs, we describe how to simplify and
analyze each divergence measures discussed in the paper.

Kullback-Leibler Divergence. It can be shown that min-
imizing KL divergence for cardinality n > 1 is equivalent to
minimizing for n = 1. The key idea is to split

log[q(t1:n, d)/p(t1:n, d)]

into a summation
∑

j log[q(tj |d)/p(tj |d)]. Then we have

argmin n

(

∑

d

p(d)
∑

t

q(t|d) log It,d

Zd

)

=argmin−
∑

d

p(d) logZd.

(13)

Variational Distance. This divergence measure is not con-
vex even under the bag-of-words assumption. To see how,
we first write out the definition and split support:

∑

t1:n,d

p(t1:n, d)

∣

∣

∣

∣

∣

1−
∏

j

Itj ,d

Zd

∣

∣

∣

∣

∣

=
∑

t1:n,d

p(t1:n, d)

(

∏

j

Itj ,d(Z
−n
d − 1) + (1−

∏

j

Itj ,d).

)

(14)

Then this would lead to 2(1 −
∑

d p(d)Z
n
d ), which is not

convex for all integer n > 1.

Hellinger’s Distance. When n = 2 Hellinger’s distance
has the same analytic form as variational distance with car-
dinality 1. For n > 2, the divergence no longer remains con-
vex. At some point in the derivation, we have Hellinger’s
distance in the following form:

2



1−
∑

t1:n,d

p(d)Z
−n/2
d

∏

j

p(tj |d)Itj ,d





=2

(

1−
∑

d

p(d)Z
n/2
d

)

.

(15)

This would fall back to variational distance with cardinality
1 (cf. Table 2) when n = 2.

χ2-Divergence. There is a one-one mapping between χ2-
divergence of cardinality n to Rényi divergence of cardinal-
ity 1 with α = n + 1. Let us start by plugging the bag-
of-words assumption into the definition and replace all the
q(tj |d)/p(tj |d) with Itj ,d/Zd. Organize a bit, the divergence
is written as follows:

−1 +
∑

d

p(d)

(

∑

t

p(t|d) It,d
Z2

d

)n

= −1 +
∑

d

p(d)Z−n
d .

(16)

This has the same analytic form as Rényi divergence. There-
fore, minimizing χ2-divergence for arbitrary cardinality n is
equivalent to minimizing Rényi divergence of α = n + 1 in
cardinality 1.

Rényi Divergence of Order α. It turns out Rényi diver-
gence has an interesting property that, under the term inde-
pendence assumption, minimizing Rényi divergence of order
α in cardinality n is equivalent to doing Rényi divergence
of order nα − n + 1 in cardinality 1. Following the same
maneuver, we have:

1

α− 1
log
∑

d

p(d)

(

∑

t

p(t, d)It,dZ
−α
d

)n

=
1

α− 1
log
∑

d

p(d)Z
n(1−α)
d .

(17)

It is clear that since n(1 − α) = 1 − (nα − n + 1), this is
equivalent to minimizing a cardinality-1 Rényi divergence.
This is a bijection as α > 1 ⇔ nα−n+1 > 1 for all integer
n ≥ 0.

Rényi Divergence of Order Infinity. This measure is per-
haps the most curious one in the study. Despite being a
special case of Rényi divergence of order α, when evaluated
in high cardinality n the divergence does not automatically
fall back to itself in cardinality 1. Nevertheless, this diver-
gence is actually rank invariant for all cardinalities n > 0 (cf.
Section 3.3). Its analytic form can be derived as follows:

log sup
t1:n,d

Z−n
d

∏

j

Itj ,d = log sup
d

Z−n
d . (18)
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