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ABSTRACT
Faceted search has been used successfully for many vertical
applications such as e-commerce and digital libraries. How-
ever, it remains challenging to extend faceted search to the
open-domain web due to the large and heterogeneous nature
of the web. Recent work proposed an alternative solution
that extracts facets for queries from their web search results,
but neglected the precision-oriented perspective of the task
– users are likely to care more about precision of presented
facets than recall.
We improve query facet extraction performance under a

precision-oriented scenario from two perspectives. First, we
propose an empirical utility maximization approach to learn
a probabilistic model by maximizing the expected perfor-
mance measure instead of likelihood as used in previous
approaches. We show that the empirical utility maximiza-
tion approach can significantly improve over the previous
approach under the precision-oriented scenario. Second, in-
stead of showing facets for all queries, we propose a selective
method that predicts the extraction performance for each
query and selectively shows facets for some of them. We
show the selective method can significantly improve the av-
erage performance with fair coverage over the whole query
set.

Keywords
Query facet extraction; empirical utility maximization; per-
formance prediction; selective query faceting

1. INTRODUCTION
Faceted search has been used successfully for many ver-

tical applications such as e-commerce and digital libraries.
However, while it holds great potential for assisting multi-
faceted queries and exploratory search, it remains challeng-
ing to be extended to the open-domain web. The challenges
stems from the large and heterogeneous nature of the web,
which makes it difficult to generate facets for the entire web
and recommend them for queries [24].
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To address the challenges, recent work [7, 15, 16] pro-
posed an alternative solution that extracts facets for queries
from their web search results, called query facet extraction.
For example, when users search with the query “baggage al-
lowance”, the system might extract query facets like air-
lines, {Delta, JetBlue, AA, ...}, travel classes, {first, busi-
ness, economy}, and flight types, {international, domestic}.
Changing from a global approach that generates facets in ad-
vance for an entire corpus [23, 5] to a query-based approach
that extract facets from the top-ranked search results, query
facet extraction appears to be a promising direction for solv-
ing the open-domain faceted search problem – it not only
make the facet generation problem easier, but also addresses
the facet recommendation problem at the same time.

However, previous query facet extraction work neglected
the precision-oriented perspective of the task, which could
be important in practical use. As in many precision-oriented
information retrieval tasks [12], we believe users are likely to
care more about “precision” than “recall” for query facet ex-
traction. That is, users may care more about the correctness
of presented facets (e.g., are the terms in the airline facet
indeed about airlines, and are the airline terms grouped to-
gether in a same facet) than the completeness of facets (e.g.,
are all possible facets for that query presented, and are all
possible airline terms included the results?). In other words,
users may prefer a few high-precision facets than many noisy
facet results. Previous work [15, 7] did not consider this
precision-oriented factor when designing query facet extrac-
tion models or evaluating extraction results. Therefore, it is
unclear if these models can adapt to such scenarios.

In this paper, we study query facet extraction under the
precision-oriented scenario. We first re-examine models and
evaluation proposed in the previous work [15] under such sce-
nario. For modeling, we find the learning objective used in
the proposed model are not ideal for the task especially un-
der the precision-oriented scenario. The proposed model is
trained by maximum likelihood estimation on labeled train-
ing data. However, likelihood can be loosely related to the
performance measure under the precision-oriented scenario.
For evaluation, the work proposed a measure to combine
precision and recall for facet terms, and the term clustering
quality. We find that the measure double-counts the recall
factor, which encourages generating large sized facets. We
fix the issue and adopt the measure for facet evaluation un-
der precision-oriented scenario by varying combining weights
between the three factors.

Based on the our analysis, we improve query facet extrac-
tion performance under precision-oriented scenarios from two



perspectives. First, since likelihood can be loosely related
to the performance measure in the precision-oriented sce-
nario, we propose to directly maximizing the performance
measure instead of likelihood during training using a empir-
ical utility maximization (EUM) approach. However, exact
optimization on the performance measure is difficult due
to the non-continuous and non-differentiable nature of in-
formation retrieval measures. We address this problem by
approximating the performance measure using its expecta-
tion. We show that this empirical utility maximization ap-
proach significantly improves over previous approaches un-
der precision-oriented scenarios, suggesting utility is a bet-
ter learning objective than likelihood, and our expectation-
based approximation is effective.
Second, we improve extraction performance by a selective

method that shows facets for good performing queries and
avoid poor performing ones. We find that extraction perfor-
mance varies for different queries – some queries are natu-
rally more difficult than others for extracting query facets.
In the precision-oriented scenario, it may be more desirable
to avoid showing facets for those poor performing queries
and leave the users with a clean keyword-search interface.
A key problem, however, is how to predict the extraction
performance. To solve this problem, we propose a simple
and effective score based on the expectation of the perfor-
mance measure. We find the score has a strong correlation
with the performance measure, and when used in the selec-
tive method, it can significantly improve the average perfor-
mance with fair coverage over the whole query set.

2. RELATED WORK

Open-Domain Faceted Search. Faceted search has been
used successfully for many vertical applications such as e-
commerce and digital libraries. However, it remains chal-
lenging to extend faceted search to the open-domain web
due to the large and heterogeneous nature of its content,
which makes it difficult to generate facets for the entire web
and recommend them for queries [24]. Most of previous at-
tempts on automatic facet generation [5, 19, 23, 21, 14, 18]
were based on existing facet metadata or taxonomies, which
are expensive to obtain or difficult to be extended to the
web scale.

Query Facet Extraction. Our previous work [15] pro-
posed query facet extraction – a technique that extracts
facets for queries from their search results in order to explic-
itly represent interesting aspects of the queries. It was later
adopted directly to solve the open-domain faceted search
problem, and was shown to be a promising direction [16].
Changing from a global approach that generates facets in
advance for an entire corpus [23, 5] to a query-based ap-
proach, query facet extraction not only makes the facet gen-
eration problem easier, but also addresses the facet recom-
mendation problem at the same time. However, this direct
adoption neglected the precision-oriented perspective of the
task when used for open-domain faceted search. That is
users may care more about correctness of presented facets
than completeness of facets in practice. In this work, we
address the issue and improve query facet extraction under
the precision-oriented scenario. Other than faceted search,
query facet extraction has also be used for diversifying search
results [10, 9].

Directly Optimizing Performance Measures. Lots of
previous work has proposed to directly optimize performance
measures in learning for various information retrieval tasks,
including ranking [28, 27, 3, 22, 6] and classification [20,
13, 11]. While higher performance is expected by doing so,
it is usually difficult due to the non-continuous and non-
differentiable nature of information retrieval measures. From
the perspective of the loss function optimization, existing
solutions fall into three categories [28]. First, one can mini-
mize upper bounds of the basic loss function defined on the
performance measures [27, 13, 31]. Second, one can approx-
imate the the performance measures with functions that are
easy to handle [11, 3]. Our work belongs to this category; it
approximates the performance measure using a continuous
function based on its expectation. Third, one can use spe-
cially designed technologies for optimizing the non-smooth
performance measures [22, 6].

More related to our problem, Jansche proposed to train a
logistic regression model by directly optimizing F-measures [11].
The work approximated the integer quantities in F-measures
based on their probabilities, and thus made the optimization
target continuous and differentiable. Then it trained the
logistic regression model by optimizing the approximated
F-measures on the training data. The method is also re-
ferred as empirical utility maximization (or empirical risk
minimization) [29], which maximizes the expected utility (or
performance) by its average utility on the training data as
an approximation. The model and measure we study in this
paper (see Section 4 and 5) is similar to Jansche’s work, and
we use similar approximation strategy in order to perform
direct optimization on the performance measure.

Performance Prediction and Selective Methods. Pre-
vious work on performance prediction in information re-
trieval primarily focused on the core ranking problem. Many
predictors/scores has been introduced for predicting retrieval
performance, such as clarity score [4], average IDF [25] and
robustness score [33]. Learning methods, such as regression
models, has also been used to combine different factors for
predicting retrieval performance [17, 2, 30].

One application of retrieval performance prediction is to
allow the systems to invoke alternative retrieval strategies
for different queries according to their performance. For ex-
ample, Yom-Tov et al. [30] and Amati et al. [1] both showed
that retrieval performance prediction can be used to improve
the effectiveness of a search engine, by performing selective
automatic query expansion for “easy” queries only. Our se-
lective method for query facet extraction is similar as these
methods in spirit – we want to selectively apply query facet
extraction for “easy” queries only. To the best of our knowl-
edge, no existing work has studied performance prediction
for query facet extraction.

3. QUERY FACET EXTRACTION
In this section, we briefly review query facet extraction to

give necessary background information for this work. Please
refer to our original paper [15] for details.

3.1 Task Description
A query facet is a set of coordinate terms (e.g., {AA,

Delta, JetBlue,...}) that explicitly represent one aspect (e.g.,
airlines) of its query (e.g., baggage allowance). The coordi-
nate terms share a semantic relationship by being grouped



under a more general hypernym (“is a” relationship). (e.g.,
AA, Delt, JetBlue are all airlines). Terms in query facet are
generally called facet terms. When it is clear from context,
we will simply use “facet” for “query facet”, and “term” for
“facet term” for convenience. Query facet extraction is to
extract query facets for a given query from certain resources,
and in our case the top search results for that query.

3.2 General framework
Query facet extraction on search results generally works

as follows: (1) Given a query, retrieve the top search results.
(2) Extract candidate facets from the search results based on
pre-defined extraction patterns. (3) Refine the candidates to
final query facets by re-clustering facets or facet terms in the
candidate set. Step 2 and 3 are further described below.

Candidate Extraction. We use the same two types of
extraction patterns, textual and HTML patterns, as in our
previous work [15]. For example, from the sentence “... air-
lines such as AA, Delta and JetBlue”, according to the tex-
tual pattern “term, {,terms}∗, (and|or) {other} term”, we
will extract the candidate facets {AA, Delta, JetBlue}. Af-
ter the extraction, candidate facets are further cleaned [15]
(e.g., normalization, removing stopwords).

Facet Refining. The candidate facets extracted are usually
very noisy [32], and could be non-relevant to the given query,
therefore they need to be refined. This is the core problem
of query facet extraction. Existing models differ in how they
refine candidate facets, and our approaches aim to improve
this part.
To help understand the refining problem, we show four

candidate facets for the query baggage allowance in Table 1.
L1 contains terms that are relevant to baggage allowance,
but they are not coordinate terms: delta, france and round-
trip are not members of the same class. L2 is a valid query
facet, but it is incomplete – another airline aa appears in L3.
L3 is mixed with different facets, airlines and travel classes.
L4 is non-relevant to the query.

Table 1: Four candidate facets for the query“baggage
allowance”

L1: delta, france, round-trip
L2: delta, jetblue, british airways
L3: aa, first, business, economy
L4: hard to remember, playing it by ear, ...

The facet refining problem can be essentially viewed as a
selective clustering problem, in which noisy terms are dis-
carded, and facet terms (e.g., aa, delta, jetblue, british air-
ways, first, business and economy) are selected, then clus-
tered into query facets (e.g., {aa, delta, jetblue, british air-
ways} and {first, business,economy}). Our previous work [15]
proposed a graphical model for this problem, and showed
it outperformed other existing methods. In this work, we
develop the EUM approach based on the previous model,
which we will re-examine in the next section.

4. QUERY FACETING MODEL
In this section, we briefly describe and re-examine query

facet extraction model proposed in our previous work [15].
For convenience, we will refer the model QF (stands for
query faceting) in the rest of this paper.

4.1 Problem Formulation
Before diving into the QF method, we first define the facet

refining problem more formally. We use F = {ti} to denote
a query facet, consisted by a set of facet terms ti. F =
{Fi} denotes the set of query facets for the given query.
TF =

∪
i Fi denotes all the facet terms in F . Candidate

facets are just an imperfect version of query facets, and we
substitute “F” with “L” to denote corresponding variables.
L = {ti} denotes a candidate facet. L = {Li} denotes all
the candidate facets. TL =

∪
i Li denotes all terms in the

candidates. Then the facet refining problem is simply to find
F constrained with TF ⊆ TL, given L (and possibly other
resources).

In QF, facet refining problem was treated as a label pre-
diction problem. It aims to learn and predict jointly 1)
whether a candidate term is a facet term and 2) whether
a pair of terms are in the same query facet. We denote the
two types of labels as follows. The term labels are denoted
by Y = {yi}, where yi = 1{ti ∈ TF} is a label indicating
whether a candidate term ti is indeed a facet term. Here
1{·} is an indicator function which takes on a value of 1 if
its argument is true, and 0 otherwise. The pair labels are de-
noted by Z = {zi,j}, where zi,j = 1{∃F ∈F , ti∈F ∧ tj ∈F}
is a label indicates whether term ti and tj are in a same
query facet. Thus, the facet refining problem is now formu-
lated as the problem of predicting label Y and Z.

4.2 The Graphical Model
In QF, a directed graphical model is proposed for the la-

beling problem, aiming to capture the dependencies between
the term and pair labels. We show the graphical model in
Figure 1.

Figure 1: Query faceting graphical model

There are four types of variables. As defined before, Y and
Z are the term and pair labels we aim to predict. TL = {ti}
are all the candidate terms. pi,j = (ti, tj) is simply a short
name for term pair ti and tj . PL = {pi,j | ti, tj ∈TL, ti ̸= tj}
denotes all the term pairs in TL. The conditional probability
distributions are defined as:

P (yi=1|ti) =
1

1 + exp{−
∑

k λkfk(ti)}
, (1)

P (zi,j =1|pi,j , yi, yj) =
yiyj

1 + exp{−
∑

k µkgk(pi,j)}
, (2)

where fk and gk are features that characterize terms and
term pairs respectively. We use the features proposed in
the work [16] in our experiments. λ and µ are the weights
associated with fk and gk, which need to be estimated during
training. The joint conditional probability for the graphical
model can be easily obtained by multiply all the conditional
probability distributions. For more details, please refer to
our previous paper [15].



4.2.1 Maximum Likelihood Estimation Training
A key problem of using QF for precision-oriented scenarios

is that the model is trained by maximum likelihood estima-
tion (MLE), which optimizes log-likelihood of given train-
ing dataset instead of the performance measure. The log-
likelihood can be obtain as follows. Given a training set that

contains ground truth labels for Y and Z, {T (i)
L , P

(i)
L , Y (i), Z(i)},

QF estimates model parameters λ and µ by maximizing the
conditional log-likelihood of {Y (i), Z(i)} as

l(λ, µ) =
∑
k

(∑
i

logP (y
(k)
i |t(k)i ) +

∑
i,j

logP (z
(k)
i,j |p(k)i,j , y

(k)
i , y

(k)
j )

)
,

(3)

where k indexes the training instances, i in the first term
of the equation indexes all candidate terms, and i, j in the
second term indexes all term pairs. With L2 regularization,

the target can be reformulated as l′(λ, µ) = l(λ, µ)−
∑

k λ2
k

2σ2 −∑
k µ2

k
2γ2 . It can be shown that optimizing l(λ, µ) is equivalent

as optimizing two independent logistic regression models,
one for whether a candidate term is a facet term, and one for
whether two facet terms should be clustered together [15].
While l(λ, µ) is straightforward to optimize, this training

target can be loosely related to the extraction perform mea-
sure, especially in the precision-oriented scenario. There-
fore, we use an empirical utility maximization approach to
directly optimize the performance measure for training the
same graphical model in Section 6.

4.2.2 Inference
We use the same inference algorithms as in the original

QF method for predicting Y and Z labels and inducing facet
output F . We quickly review the algorithms as follows (see
more details in the work [15]). Due to that maximum a
posteriori inference on QF model is NP-hard, QFI and QFJ
were proposed to approximate the results.
QFI approximates the results by predicting Y (i.e., whether

a term is a facet term) and Z (i.e., whether two terms are
in a same facet) independently. It first selects a set of candi-
date terms as facet terms by thresholding on P (yi|ti), ignor-
ing the dependences between yi and its connected variables
in Z. Then, QFI clusters only the selected terms into facets,
using P (zi,j =0|pi,j , yi =1, yj =1) as the distance measure.
This algorithm has two tuning parameters, wmin for thresh-
olding P (yi|ti), and dmax for thresholding cluster diameter.
QFJ tries to perform joint inference on Y,Z by approxi-

mately maximizing their the posterior with respectively to Y
and Z iteratively. It first guesses a set of candidate terms as
initial facet terms. Then it clusters those selected terms us-
ing a greedy approach. After clustering, QFJ checks whether
each term “fits” in its cluster based on the posterior, and
removes outliers. The algorithm repeats the process (clus-
tering and removing outliers) until convergence. QFJ has
no tuning parameters, and the inference is purely guided by
the posterior probability.

5. QUERY FACET EVALUATION MEASURES
In this section, we re-examine PRFα,β measure proposed

in our previous work [15], which will be used for evaluat-
ing query facet extraction under precision-oriented scenarios
and developing our new approaches under the scenarios.
The idea of query facet evaluation is to compare extracted

facets with ground truth facets constructed by human anno-
tators. To help describe the measure, we will use superscript

“∗” to distinguish ground truth from system output. For ex-
ample, y∗

i is a ground truth term label, while yi is a term
label predicted by the system. T ∗

F is a set consisted by all
the terms in the ground truth facets, while TF is consisted
by all terms in the system extracted facets.

The evaluation can be viewed from two perspectives. First,
it can be evaluated as a classification task to measure how
well models find facet terms. Second, it can be evaluated
as a clustering task to measure how well models group facet
terms together. PRFα,β combines the classification and clus-
tering evaluation together as described below.

Term Precision and Recall. The classification perfor-
mance can be measured by term precision (i.e., precision of
the selected candidate terms being facet terms) and term
recall (i.e., recall of facet terms). They can be calculated
as below, where subscript “c”, “s”, “g” stands for “correct”,
“system”, “ground truth” respectively.

• Term precision: TP = Tc
Ts

, where Tc is the number of
correct facet term selected, Ts is the number of terms
select by the system.

• Term recall: TR = Tc
Tg

, where Tc is as defined above, Tg is

the number of facet terms in the ground truth.

• Term F1: TF = 2Tc
Ts+Tg

is the F1 combination (or the

harmonic mean) of TP and TR.

Quantity Tc, Ts, Tg can be more precisely defined using term
labels yi and y∗

i as

Tc =
∑
i

yiy
∗
i , Ts =

∑
i

yi, Tg =
∑
i

y∗
i . (4)

Term clustering. Our re-examination finds that the term
clustering measure used in PRFα,β could double-count term
recall factor. The problem stems from that the terms being
clustered by the model can be different from the terms clus-
tered in the ground truth, i.e., TF ̸= T ∗

F . TF may include
wrong terms or miss correct facet terms. Standard clus-
tering measures typically cannot handle these cases prop-
erly. Therefore, in our previous work [15], we adjust the
extracted facets F as if only facet terms in T ∗

F were clus-
tered by the system. This is done by removing incorrect
terms (t ∈ TF − T ∗

F ) from F , and adding each missing facet
terms (t∗ ∈ T ∗

F − TF ) as singletons. The previous work
claimed that by this adjusting, term clustering performance
does not take into account the effectiveness of finding facet
terms, but we now find it actually incorporates term recall
factor. Analytically, we can see that when a system fails to
find a facet term, by assuming it being a singleton, the clus-
tering performance will be hurt (unless the facet term is a
singleton in the ground truth). Empirically, we find systems
return large sized facets when tuned on term clustering per-
formance based on the adjusting. For example, on average,
QFI returns 509.8 terms per query, while there is only 81.2
facet terms per query in the ground truth. Therefore, by
combining term precision, recall and clustering performance,
PRFα,β actually double-counts the term recall factor by this
adjusting when measuring clustering performance.

Since the mistakes of finding a wrong term and missing
facet terms have already been accounted for in term preci-
sion and recall, we think term clustering performance should
be measured only on the facet terms models selected cor-
rectly (i.e., TF ∩ T ∗

F ) in PRFα,β . Thus, we instead adjust



clusters by removing incorrect terms (t ∈ TF −T ∗
F ) in F , as

well as missing facet terms (t∗ ∈ T ∗
F − TF ) in F∗. We find

this overlap adjusting results in more reasonable returned
facet size when tuned on clustering performance measures.
The average number of facet terms returned per query by
QFI now decreases to 157.07.
After cluster adjusting, facet term clustering performance

is measured by pair-counting F1 measure. Here the pair-
counting F1 measure treats term clustering as classification
on whether each pairs of terms are in a same facet, and
then combines pair precision and recall using F1 measure.
Pair precision and recall can be calculated as below. (The
subscripts carry the same meaning as in term precision and
recall.)

• Pair precision: PP = Pc
Ps

, where Pc is the number of term
pairs the model clustered together that are indeed in a
same facet in the ground truth, Ps is the number of term
pairs the model clustered together.

• Pair recall: PR = Pc
Pg

, where Pc is as defined above, Tg is

the number of term pairs clustered together in the ground
truth.

• Pair F1: PF = 2Pc
Ps+Pg

is the F1 combination (or the har-

monic mean) of PP and PR.

Quantity Pc, Ps, Pg can be more precisely defined using
term labels yi,y

∗
i and pair labels zi,j , z

∗
i,j as

Pc =
∑
i,j

zi,jz
∗
i,j , Ps =

∑
i,j

zi,jy
∗
i y

∗
j , Pg =

∑
i,j

z∗i,jyiyj , (5)

where term labels yi,y
∗
i are used to perform the overlap ad-

justing as described previously.

Combining term precision, recall and clustering. The
quality of query facet extraction is intrinsically multi-faceted.
Different applications or scenarios might have different em-
phasis in the term precision, recall and clustering. To ad-
dress this issue, PRFα,β combines the three factors together,
using weighted harmonic mean in a similar way as F-measures,

PRFα,β(TP, TR, PF ) =
(α2 + β2 + 1)
α2

TP
+ β2

TR
+ 1

PF

, (6)

where α, β ∈ [0,+∞) are used to control the weight between
the three factors in the same way as “β” in F-measures [26].
α and β can be interpreted as the importance of TP and TR
compared to PF respectively. More formally, we have

when α =
TP

PF
,
∂PRFα,β

∂TP
=

∂PRFα,β

∂PF

when β =
TR

PF
,
∂PRFα,β

∂TR
=

∂PRFα,β

∂PF
.

(7)

The intuition behind is that we want to specify the TP/PF
ratio at which the user is willing to trade an increment in
TP for an equal loss in PF , and similarly for TR/PF .
To evaluate query facet extraction under the precision-

oriented scenario, we can set a high α and/or low β. For
example, we can set α=2, β=1 to evaluate the case where
TP is twice important than TR and PF . Perhaps more rea-
sonably, we can only down-weight the recall factor, by set-
ting α=1, β=1/3 to evaluate the case where TP and PF is
three times important than TR.
To help develop our empirical utility maximization ap-

proach, we can rewrite PRFα,β as a function of term and

pair quantities PRFα,β(Tc, Ts, Tg, Pc, Ps, Pg) as follows:

PRFα,β =
2(α2 + β2 + 1)TcTp

2α2TsPc + 2β2TgPc + TcPs + TcPg
. (8)

It is easy to see PRFα,β can be also rewritten as a function of
predicted labels and ground truth labels, PRFα,β(Y,Z, Y

∗, Z∗),
by substituting term and pair quantities in Equation 8 using
Equation 4 and 5.

6. EMPIRICAL UTILITY MAXIMIZATION
In this section, we will describe our empirical utility maxi-

mization (EUM) approach that directly optimize PRFα,β for
training QF model (described in Section 4).

The QF model can be viewed as a model which takes
in candidate terms and term pairs and predicts their labels,
(Y,Z) = h(TL, PL;λ, µ). The parameters λ, µ are trained by
maximizing the conditional likelihood of the labels, l(λ, µ)
as defined in Equation 3. One problem with the maximum
likelihood estimation is the likelihood target can be loosely
related to performance measure PRFα,β , especially in the
precision-oriented scenario, where term recall are less im-
portant than other factors (as we will show in Section 8).

Therefore, we propose an alternative way of training the
model h(TF , PF ) by directly optimizing PRFα,β measure.
Our goal is to maximize the expected utility (or perfor-
mance),

EP
[
PRFα,β(h(TL, PL), Y

∗, Z∗)
]
, (9)

where P is the underlying and unknown distribution of our
data (TL, PL, Y

∗, Z∗). In order to train the model, em-
pirical utility maximization (or equivalently empirical risk
minimization) is usually used, which tries to maximizes the
above utility objective function over empirical data, D =

{T (i)
L , P

(i)
L , Y ∗(i), Z∗(i)|i = 1...n}. The empirical utility is

given below,

U(λ, µ) = ED
[
PRFα,β(h(TL, PL), Y

∗, Z∗)
]

=
1

n

n∑
i=1

PRFα,β(T
(i)
c , T

(i)
s , T

(i)
g , P

(i)
c , P

(i)
s , P

(i)
g ),

(10)

where we use the uniform distribution over empirical data
to replace the unknown distribution, and replace the PRFα,β

term with PRFα,β calculation based on term and pair quan-
tities PRFα,β(Tc, Ts, Tg, Pc, Ps, Pg) as defined in Equation 8.

Our goal now is to find (λ, µ) = argmaxλ,µ U(λ, µ). Un-
fortunately, this objective is difficult to optimize. The basic
quantities involved are integers, and the optimization objec-
tive is a piecewise-constant function of the parameters λ, µ.
The non-smoothness is due to that the dependent variable
yi and zi,j take only discrete values {0, 1}. For example,
U(λ, µ) contains integer quantity Tc =

∑
i yiy

∗
i that counts

the correct facet terms labeled. According to QFI (see Sec-
tion 4), yi is predicted as either 1 or 0 by thresholding its
term probability P (yi = 1|ti) as:

yi = 1{P (yi = 1|ti) > wmin}, (11)

where P (yi = 1|ti) = 1
1+exp{−

∑
k λkfk(ti)}

(defined in Equa-

tion 1) involves parameter λ.
In generally, we can approximate discrete variables by

their expectation to obtain a smooth objective function [11].
In our case, by assuming independence between all the la-
bels, yi can be approximated by its expectation as,

ỹi = E[yi] = P (yi=1|ti) = σ(λT f(ti)), (12)



where we use σ(x) = 1
1+exp{−x} to denote the logistic func-

tion used in Equation 1, and use vector-representation for λ
and feature f(ti) for convenience. Similarly, we approximate
zi,j by its expectation assuming full independent condition
as

z̃i,j = E[zi,j ] = P (zi,j =1, yi=1, yj =1|ti, tj , pi,j)
= P (zi,j =1|pi, yi=1, yj =1)P (yi=1|ti)P (yj =1|tj)

= σ(µT g(pi,j))σ(λ
T f(ti))σ(λ

T f(tj)).

(13)

In the same way, we can approximate term and pair quanti-
ties (i.e., Tc, Ts, Pc, Ps, Pg) by their expectation. It is easy
to see that, under the full independence assumption between
all labels, their expectation can be obtained by substituting
yi and zi,j in Equation 4 and 5 with their expectation E[yi]

and E[zi,j ]. For example, we can approximate Tc ≈ T̃c by

T̃c = E[Tc] =
∑
i

E[yi]y
∗
i =

∑
i

σ(λT f(ti))y
∗
i . (14)

Based on the approximated term and pair quantities, we can
rewrite our optimization objective as

Ũ(λ, µ) =
1

n

n∑
i=1

PRFα,β(T̃
(i)
c , T̃ (i)

s , T (i)
g , P̃ (i)

c , P̃ (i)
s , P̃ (i)

g ),

(15)
which can now be maximized numerically. More specially,

we used gradient ascent for maximizing Ũ(λ, µ). The deriva-

tives of Ũ(λ, µ) can be easily obtained based on the deriva-
tives of ỹi, z̃i,j , as we given below,

∇λỹi(λ) = σi(1− σi)λ,

∇λz̃i,j(λ) = σi,jσiσj(2− σi − σj)λ,

∇µz̃i,j(µ) = σiσjσi,j(1− σi,j)µ,

(16)

where σi ≡ σ(λT f(ti)), σi,j ≡ σ(µT g(pi,j)). Note that the

function Ũ(λ, µ) is generally not concave. We can deal with
this problem by taking the maximum across several runs
of the optimization algorithm starting from random initial
values. After training, we use the original inference QFI and
QFJ as describe in Section 4 to predict labels and induce
facets.

7. SELECTIVE QUERY FACETING
In this section we describe selective query faceting – our

selective method for query facet extraction. The idea is mo-
tived by the variance in extraction performance we observed
– depending on the nature of queries and extraction mod-
els, quality of the extracted facets varies drastically from
excellent to poor and complete noise. For example, queries
about products, such as “toilet” and “volvo”, tend to have
more high-quality candidate facets extracted and are there-
fore easier than other complex queries, such as “self motiva-
tion”, to find query facets. In our experiments, we also find
PRFα,β could range from 0 to above 0.8.

Selective Query Faceting. Similar as the idea of selective
query expansion [30, 1] we can selectively present facets to
users based on the extraction performance of each queries.
Ideally, we can only show facets for good performing queries
and avoid bad ones to improve user satisfaction, as in the
precision-oriented scenario, it may be more desirable to leave

users with a clean keyword-search interface than showing
poor-quality facets. To support this selective query faceting,
a key problem need to be addressed is the prediction of ex-
traction performance. We find a simple score based on the
expectation of PRFα,β could predict extraction performance
fairly well. Next, we will describe our extraction perfor-
mance prediction method.

Performance Prediction. In performance prediction, our
goal is to predict the extraction performance for a given
query with its extracted facets. We focus on predicting
PRFα,β , and leave prediction of other measures as future
work. The prediction could be done by using single indica-
tor scores (like the clarity score in prediction retrieval perfor-
mance [4]), or by combining different features using regres-
sion or classification models. No matter which approach, we
first need to find good indicators/features for estimating the
performance.

To find effective features, a natural way is to investigate
the probabilistic model we have already learned in the QF
method, because the learned probabilities already incorpo-
rate beliefs about the correctness of corresponding outputs.
For example, we can use the term probability defined in
Equation 1 to estimates the “likelihood” of the output terms
are indeed facet terms, and use the pairs probability defined
in Equation 2 to estimated the “likelihood” of the term pairs
in a same extracted facets indeed belong to a query facet.

In order to use the term and pair probabilities as fea-
tures, we need to aggregate them in some ways, because
these probabilities are for terms and pairs, not directly for
whole extracted facet set. We investigates two ways of ag-
gregation. First, from the perspective of data fitness, we can
directly use log-likelihood of extracted facets to measure the
fitness. For example, we can use the whole log-likelihood
based on Equation 3, and we can also use the log-likelihood
for only the terms or only the pairs based on the first term
and second terms in the equation respectively.

Second, from the perspective of directly estimating utility
(performance), we can aggregate the probabilities for esti-
mating PRFα,β directly in a similar way as our empirical
utility maximization approach. More specially, we can esti-
mate PRFα,β performance based on the expected term and
pair quantities under the learned model. The estimates can
be obtained as follows,

T̂P =

∑
i P (ti)yi∑

i yi
, T̂R =

∑
i P (ti)yi∑
i P (ti)

,

P̂T =

∑
i,j P (pi,j)zi,j∑

i,j zi,j
, P̂R =

∑
i,j P (pi,j)zi,j∑
i,j P (pi,j)yiyj

,

(17)

where we use P (ti) ≡ P (yi = 1|ti), P (pi,j) ≡ P (zi,j =
1|pi,j , yi = 1, yj = 1) for simplification. Estimates of TF ,
PF and can be easily obtained by substitute TP , TR, PP ,
PR with their estimates in the corresponding equations in
Section 5. Estimate of PRFα,β can be obtained by substi-
tuting TP , TR and PF with their estimates in Equation 6.
We call this estimate of PRFα,β “PRF score”.

To investigate the effectiveness of the two types of fea-
tures, we analyze the correlation between extraction perfor-
mance and each individual features. First, we find that PRF
score has strong correlation (0.6249 with p-value 3.6×10−12)
with the performance PRFα=1,β=1. This suggest 1) PRF
score is a good indicator for extraction performance, and
might be effective in performance prediction, and 2) our



estimation of PRFα=1,β=1 based on its expectation is effec-

tive. Second, we find utility-based features PRF scores, T̂F ,

T̂R correlate better with PRFα,β performance than other
likelihood-based features. This validates our assumption
that likelihood can be loosely related to the performance
measure, and utility could be a better optimization objec-
tive. (We omit detail results due to space limitation.)
We combine the proposed features in linear regression

and logistic regression models. However, we find the re-
sults are not significantly better than simply using PRF
score for prediction, which could be caused by the linear
dependence between those features. Thus, we propose to
use only PRF score for extraction performance prediction,
which is simple and effective as we will show in Section 8.
We also test other features based on statistic aggregates of
the term and pair probabilities, including minimum, max-
imum, mean, sum and standard deviation. However, they
show relatively low correlation with PRFα,β , and thus we do
not report the results here due to space limitation.
After choosing PRF score as the performance predictor,

selective query faceting can be easily done by thresholding
this score to decide to show or avoid showing query facet
results for each query. We carry out experiments to evaluate
its effectiveness in Section 8.

8. EXPERIMENTS
Our experiments aim to investigate mainly three research

questions. First, we want to test whether existing query
facet extraction methods adapt to precision-oriented scenar-
ios. Second, we want to test if our empirical utility maxi-
mization approach is effective in precision-oriented scenar-
ios. Last, we want to test whether the PRF score effectively
predict extraction performance, and support selective query
faceting. We will first describe our experimental settings,
then present experiment results for each of the research ques-
tions.

8.1 Experimental Settings

Data. We use two datasets from previous work, which we
name QF13 [15] and FWS14 [16]. QF13 contains 100 web
search queries, their top 100 web search results from a com-
mercial web search engine, and their query facet annotation.
FWS14 contains 196 queries from TREC Web Track and
their query facet annotation. We perform the same retrieve
model to obtain top 100 search results for these queries as in
the original work. The query facet annotation was done by
pooling facet results from different models, and then hav-
ing the pooled terms re-grouped by human annotators into
query facets [15]. Our facet candidates are extracted as de-
scribed in Section 3.

Evaluation. We use PRFα,β as the evaluation measures, as
well as term precision (i.e., TP ), term recall (i.e., TR), and
term clustering F1 (i.e., PF ). We choose this measure be-
cause it has the flexibility of adjusting emphasis between
“facet precision” and “facet recall”, which naturally suits
well with the precision-oriented problem. When α= β =1,
PRFα=1,β=1 is used to evaluate the case where term preci-
sion, term recall and term clustering are equally important.
To evaluate facets under precision-oriented scenarios, we set
high α ∈ {2, 3, . . . , 10} with fixed β = 1. The settings cor-
respond to the cases where term precision is twice to ten

times important as both term recall and term clustering.
Without any prior knowledge, it is more fair to assume that
term precision and clustering are equally important (they
are both “precision” factors for query facets), therefore we
will focus more on only down-weight term recall by setting
β ∈ { 1

2
, 1
3
, ..., 1

10
} or equivalently 1

β
∈ {2, 3, . . . , 10} with

fixed α=1. The settings correspond to the case where term
precision and clustering is twice to ten times importance as
term recall. Following the previous work [15, 16], we evalu-
ate top 10 facets returned from each models.

We use 10-fold cross validation on QF13 and 4-fold cross
validation on FWS14, as in the original work, for training,
tuning (if applicable) and testing models. Models are tuned
on the same PRFα,β measure that they are tested on. Unless
specified else, statistically significant test is performed by
using paired t-test with 0.05 as the p-value threshold.

Methods. We study five query facet extraction models
briefly summarized as below.

• pLSA and LDA [32, 15]: pLSA and LDA was applied
on candidate facets for facet refining. After training, the
topics are returned as query facets, by using top terms in
each topic. We tune the number of facets and number of
facet terms in each facets.

• QDM [7]: this is an unsupervised clustering method that
applies a variation of the Quality Threshold clustering al-
gorithm [8] to cluster the candidate facets with bias to-
wards important ones. We tune the diameter threshold,
weight threshold for valid cluster and the threshold for
selecting terms.

• QFI and QFJ [15]: the two models have been described
in Section 4. They are reported to be the best across
several evaluation measures [15, 16], therefore we primar-
ily focus on them. Except for the difference of indepen-
dent and joint inference, the two models are different in
that QFI has tuning parameters that can be tuned for
given measures, while QFJ do not, as it tries to optimize
log-likelihoods. For QFI, we tune the weight threshold
for facet terms wmin, and the diameter threshold dmax.
There are no tuning parameters for QFJ.

We study two ways of training the graphical model (see
Section 4) for QFI and QFJ.

• MLE: our previous work [15] used likelihood as the op-
timization objective and performed maximum likelihood
estimating for training (see Section 4).

• EUM: since likelihood can loosely related to the perfor-
mance measure, we propose to use empirical utility maxi-
mization to directly optimize the PRFα,β measure during
training (see Section 6). With different α, β, we can use
different versions of PRFα,β as the optimization objective.
We test three runs by setting (α=1, β=1), (α=2, β=1),
(α=1, β = 1

2
). We denote the different runs by add α, β

subscript in “EUM” (e.g., EUM2,1 stands for EMU train-
ing using PRFα=2,β=1 as the optimization objective).

8.2 Evaluation under Precision-Oriented Sce-
narios

We first investigate if the five existing models can adapt to
precision-oriented scenarios by evaluation based on PRFα,β

with different α, β settings. In Figure 2, we show PRFα,β

performance of different α (i.e., term precision is more im-
portant than term recall and clustering) on the left, and of



different β (i.e., term precision and clustering are more im-
portant than term recall) on the right. We test all the five
models with QFI, QFJ trained by MLE. We report results
on FWS14 (observations are similar for QF13).

Figure 2: PRFα,β performance with different α (left,
fixed β=1) and different β (fixed α=1, right) settings
for existing methods on FWS14.
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First, we find QFJ does not adapt well to precision-oriented
scenarios. From the figure, we can see the superiority of
QFJ over other models becomes less evident (on QF13) or
disappears on FWS14, when moving from the normal case
to precision-oriented cases. This is due to that QFJ tries
to optimize log-likelihood for inferencing, and it cannot be
tuned on the performance measures like other models. So it
returns the same results for the normal case and precision-
oriented scenarios. Second, we find generally QFI and QDM
can adapt better than the other models to the precision-
oriented scenarios, with QFI consistently better than all the
other models on both datasets. The adaptability of the two
models can be explained by their tuning procedure. For ex-
ample, depending on the target performance measure, QFI
can set different threshold wt for select facet terms. Overall,
we find QFI (under MLE training) is the best among these
existing models for the normal case, as well as precision-
oriented cases.
To further analyze how QFI adapt to the precision-oriented

scenarios, in Table 2, we report PRFα,β together with TP ,
TR, PF and facet size (the total number of terms returned
for a query) when setting different β in PRFα,β . From the
table, we find that as term recall factor becomes less and
less important (or equivalently as the precision factors be-
comes more and more important), QFI becomes more and
more conservative in selecting terms. The number of terms
returned on average for each queries (“size” in the table) de-
creases from 89.5 to 45.2. Term precision TP thus increases
significantly, while term recall TR and term clustering PF
decreases. This indicates, by tuning on the performance
measure, QFI tries to find a good balance between the tree
factors for each scenarios.

8.3 EUM Performance
Next, we compare EUM and MLE training to test the

effectiveness of the EUM approach we proposed. We first
compare EUM and MLE training using both QFI and QFJ

Table 2: PRFα,β performance with its TP , TR, PF
under different β settings (fixed α = 1) for QFI on
QF13. “Size” reports the average number of terms
returned for each queries.

1
β

PRFα,β TP TR PF Size

1 0.4720 0.4450 0.4881 0.6209 89.5
2 0.4822 0.4896 0.4186 0.6192 70.7
3 0.4891 0.5108 0.3574 0.5989 56.5
4 0.5003 0.5291 0.3498 0.5925 53.0
5 0.5053 0.5348 0.3306 0.5928 48.9
6 0.5042 0.5343 0.3194 0.5834 47.1
7 0.5060 0.5343 0.3194 0.5834 47.1
8 0.5072 0.5343 0.3194 0.5834 47.1
9 0.5112 0.5364 0.3172 0.5864 46.7

10 0.5138 0.5365 0.3097 0.5824 45.2

in Figure 3. Due to space limitation we only report results
for PRFα=1,β (i.e., fixed α = 1 with different β settings) on
QF13. Observations are similar for other cases. The figure
shows QFI with EUM and MLE training on the left, and
QFJ results on the right. We report three runs of EUM,
which use PRFα,β under different α, β settings (specified in
the legend) as the training target.

Figure 3: PRFα=1,β performance for MLE and EUM
training using QFI (left) and QFJ (right) on QF13.
The three EUM runs use PRFα,β under different α, β
settings (specified in the legend) as the training tar-
get.
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From Figure 3, for QFI, we find there are no statistically
significant difference between MLE and EUM in most cases,
even though generally EUM obtains slightly better PRFα,β

than MLE. This can be explained by that QFI under MLE
has already incorporated the PRFα,β learning target due to
that it is tuned on PRFα,β . Essentially, we can view QFI
(under MLE training) as a model that is trained on likeli-
hood to find a small tuning space to enable optimization on
given performance measures by hand tuning.

Differently, for QFJ, we find EUM can improve over MLE
largely under the precision-oriented scenarios. The differ-
ence between EUM and MLE are statistically significant for
all 1/β > 2 and for all the three EUM runs. This indicates
1) utility (performance measure) is a better optimization ob-
jective than likelihood and 2) our approximation of PRFα,β

based on its expectation is effective.



To study how EUM training affects QFJ in more details,
as an example, we show PRFα=1,β=0.1 together with its TP ,
TR, PF and facet size in Table 3.

Table 3: PRFα=1,β=0.1 with TP , TR, PF for MLE and
EUM training on QF13. Subscripts of EUM indi-
cates the α, β setting used for its optimization target
PRFα,β.

model Training PRFα,β TP TR PF Size
QFJ MLE 0.4734 0.3986 0.4832 0.6961 97.0
QFJ EUM1,1 0.5223 0.4884 0.3341 0.6702 54.8
QFJ EUM2,1 0.5696 0.5711 0.2328 0.6705 33.9
QFJ EUM1,0.5 0.5607 0.5710 0.2229 0.6620 33.0

From Table 3, first, we can see when trained on EUM un-
der precision-oriented settings (i.e.,EUM2,1 and EUM1,0.5),
QFJ are more conservative in selecting terms than in MLE
training. When moving from MLE to EUM training, its
facet size becomes much smaller (i.e., 97 to 33), TP in-
creases largely while TR decreases largely. This effect is
desirable under the precision-oriented scenarios, in which
we care much more about precision than recall, as reflected
by the improvement in PRFα=1,β=0.1 shown in the table.
Second, by comparing EUM1,1 with EUM2,1, EUM1,0.5

in Table 3, we can see EUM2,1, EUM1,0.5 trained models
behave more conservatively than EUM1,1 trained models.
This suggest our training is effective – as we change the
training target PRFα,β parameter from (α = 1, β = 1) to
(α = 2, β = 1) and (α = 1, β = 0.5)), it learns that we are
putting more emphasis on precision, and thus behaves more
conservatively.
Last, the improvement of QFJ in precision oriented sce-

narios raises a question – will it outperform previous best
model QFI under precision-oriented scenarios? We test this
in Figure 4. In the figure, we compare QFJ under EUM
training with other baselines, including QFI under MLE
(representing the state-of-the-art baseline) and EUM train-
ing. We only report results under EUM1,0.5 training on
QF13 (results are similar in other cases). From the figure
we find QFJ under EUM training outperforms other models
in the precision-oriented scenarios. The difference between
QFJ,EUM and the state-of-the-art method QFI,MLE are
statistically significant for PRFα=1,β when 1

β
> 4.

8.4 Extraction Performance Prediction
To predict query facet extraction performance, we build

linear regression models using only PRF score (see Section 7)
as the feature (with intercept). We test the models for pre-
dicting PRFα,β under different α, β, based on 10-fold cross
validation on QF13 for QFI in Table 4. We report root-
mean-square deviation (RMSD), Pearson correlation (R),
and p-values for the significance of correlation.
The results in Table 4 show fairly strong RMSD values and

strong positive correlations between the predicted PRFα,β

and real PRFα,β performance for most cases. For exam-
ple, p-value 1.4 × 10−11 for the first row indicates that it
is extremely unlike that the predicted PRFα=1,β=1 perfor-
mance has no relationship with the actually performance.
We also see one exception. For PRFα=5,β=1 we only see fair
correlation, which may due to that we use α= 1, β = 1 for
computing our PRF score, while in PRFα=5,β=1 the three
factors are more unbalanced weighted.

Figure 4: PRFα,β performance with different α, β set-
tings for QFI and QFJ under MLE and EUM train-
ing on QF13. EUM1,0.5 run result is reported for
EUM.
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Table 4: Linear regression results based on 10-fold
cross-validation for predicting PRFα,β performance.
RMSD – root-mean-square deviation, R – Pearson
correlation.

Measure RMSD R p-value
PRFα=1,β=1 0.1110 0.6112 1.4× 10−11

PRFα=1,β=0.2 0.1800 0.5745 4.1× 10−10

PRFα=1,β=0.1 0.1882 0.5566 1.8× 10−9

PRFα=5,β=1 0.2109 0.2958 0.0028
PRFα=10,β=1 0.2245 0.4028 3.2× 10−5

8.5 Evaluating Selective Query Faceting
Next, we study the effectiveness of selective query faceting

based on the predicted score. Recall that our selective method
is done by thresholding the predicted performance for de-
ciding show or avoid showing facets for each query (see Sec-
tion 7). With a higher threshold, selective query faceting
would select less queries to show facets, but users should
obtain better performance for the facets that are presented
to them. On the contrary, a lower threshold will result in se-
lecting more queries to show facets, but the performance for
the selected queries may be worse. There is a trade-off be-
tween the performance of selected queries and the coverage
on queries for query faceting.

To evaluate selective query faceting, we plot the average
PRFα,β performance for queries selected by PRF score, when
using different thresholds in Figure 5. The x-axis indicates
the number of selected queries, while the y-axis indicates
the average PRFα,β performance for those selected queries.
In addition to average PRFα,β , we also plot the standard
error with 95% confidence intervals by the gray area (except
for the case where only one query is selected). We report
results on QF13 for a QFI run that are trained under MLE
and evaluated on PRFα=1,β=1.

From Figure 5, we can see as we select less and less queries
for presenting facets, generally the average performance for
the selected queries increases. This indicates the query faceting
method is fairly effective in selecting good performing queries
and avoid bad ones. When 20 queries are selected, we ob-



Figure 5: Average PRFα,β performance for selected
queries. The gray area indicates standard error with
95% confidence intervals. Run: PRFα=1,β=1 as the
measure with MLE trained QFI as the extraction
model
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tain 0.5792 PRFα=1,β=1 for the selected queries, comparing
to 0.4720 when the selective method is not performed (i.e.,
showing facets for all queries). The difference are statis-
tically significant according to two-tailed two-sample t-test
(p-value = 0.0034).

9. CONCLUSIONS AND FUTURE WORK
In this work, we study and improve query facet extrac-

tion under precision-oriented scenarios, which could help
this technique to be used practically. We find the perfor-
mance expectation can be used as an approximation to di-
rectly optimize the performance measure, which significantly
improves existing models under precision-oriented scenarios.
We propose PRF score based on the expectation of PRFα,β

to predict extraction performance. We show this score has
fairly good prediction performance which enables selective
query faceting that selects good performing queries to show
facets, and improve the average extraction performance.
As a start for making query facet extraction more prac-

tical, this work only focuses on precision-oriented scenarios
and only on the PRFα,β performance measure. However, it
also opens up several interesting directions for future work.
First, it may be interesting to study recall-oriented scenar-
ios, as high recall may be more desirable in some cases where
users want to explore more (e.g., exploratory search). Sec-
ond, it would also be interesting to generalize the empiri-
cal utility maximization approach to optimize other perfor-
mance measures (e.g., facet ranking measure) for query facet
extraction.
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