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ABSTRACT

Developing effective methods for fusing multiple ranked lists
of documents is crucial to many applications. Federated web
search, for instance, has become a common practice where
a query is issued to different verticals and a single ranked
list of blended results is created. While federated search is
regarded as collection fusion, data fusion techniques aim at
improving search coverage and precision by combining mul-
tiple search runs on a single document collection. In this
paper, we study in depth and extend a neural network-based
approach, LambdaMerge [32], for merging results of ranked
lists drawn from one (i.e., data fusion) or more (i.e., col-
lection fusion) verticals. The proposed model considers the
impact of the quality of documents, ranked lists and verti-
cals for producing the final merged result in an optimization
framework. We further investigate the potential of incor-
porating deep structures into the model with an aim of de-
termining better combinations of different evidence. In the
experiments on collection fusion and data fusion, the pro-
posed approach significantly outperforms several standard
baselines and state-of-the-art learning-based approaches.

Categories and Subject Descriptors

H.3.3 [Information Systems]: Information Search and Re-
trieval

Keywords

Data fusion; collection fusion; learning to merge; deep neural
network

1. INTRODUCTION
Developing effective methods for fusing multiple result

lists into one is beneficial to many applications such as web-
scale federated search. A large body of fusing techniques has
been widely studied, and can be broadly categorized into
two tasks, namely data fusion and collection fusion. While
both tasks seek an optimal blending of results from different
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lists, collection fusion has a focus on merging results re-
trieved simultaneously from multiple collections. Collection
fusion, often referred to interchangeably as federated search,
is preferred over centralized search alternatives for reasons
such as efficiency [35]. In addition, federated search systems
can search the content of the hidden web without crawling,
producing results comprised of answers returned from mul-
tiple verticals [35]. Collection fusion techniques are mostly
concentrated on approximating comparable document scores
from different repositories [9, 38, 36]. In recent years, the
TREC federated web search track established reusable test
sets from real web search engines of different verticals [13,
14]. Better performing approaches for the result merging
task in this track take into account combined signals such
as the number of engines containing a document [31] and
text similarity [18].

Data fusion, on the other hand, often refers to tasks where
the aim is to merge results retrieved from a single document
collection. Compared with individual ranking systems, data
fusion provides the advantage that the merged list usually
has a higher precision and recall [12]. Known as the chorus

effect [39], many effective fusion methods are based on the
premise that documents that are highly ranked in many of
the lists are likely to be relevant [1, 2, 17, 24]. Recent de-
velopments in data fusion algorithms rely on using training
queries to better estimate the probability of relevance using
signals such as document ranks and scores [25, 34, 26].

Recent work [32] on results fusion presents the first at-
tempt that uses relevance judgments to directly optimize re-
trieval performance metrics such as MAP or NDCG. In par-
ticular, Sheldon et al [32] merged results from multiple query
reformulations to improve search while mitigating risks such
as query topic drift. This approach, LambdaMerge (or λ-
Merge), can be classified as a data fusion technique since
search runs from different reformulations are conducted on
the equivalent of a single collection1. λ-Merge learns a scor-
ing function to rank documents by combining features indi-
cating document relevance (e.g., retrieval score or rank of a
document) with features indicating the quality of the refor-
mulation and its results (e.g., query clarity and drift).

While λ-Merge has demonstrated strong performance in
data fusion, it is unclear how an effective adaption to col-
lection fusion can be carried out. In web-scale federated
search, it is beneficial to understand the right medium and
identify appropriate verticals for a query. System efficiency,

1The industrial level of document indices should be dis-
tributed, but experiments conducted in λ-Merge assumes
the presence of every document in every list.
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for instance, can be improved when a query is only issued
to a number of top verticals. Ranking can further be guided
by preferring certain verticals among those selected, result-
ing in better search performance2. In this paper, we address
the task of result merging and extend λ-Merge in a way
that the new model accommodates and considers the im-
pact of drawing results from different verticals. Specifically,
the proposed approach learns a scoring function character-
ized by not only the quality of documents and resources
(i.e., ranked lists produced by different search engines), but
verticals that contain the most relevant content. The final
ranking of blended results is determined by directly optimiz-
ing the overall retrieval effectiveness.

Inspired by the recent success of deep structures [5, 16,
20], our model further investigates the potential of com-
bining different ranking evidence using this approach. In
particular, we incorporate a deep neural network (DNN) for
learning the scoring function. The structure of a DNN is
highly simple and generative, and can be applied to most
classification and optimization problems given proper de-
sign of the loss function in the output layer. We note that
the focus of previous studies is mostly around learning rep-
resentation [15, 20, 29]; we propose to apply deep structured
models to the fusion task.

We conduct extensive experiments in a variety of fusion
scenarios. Specifically, we use two recent collections from
the TREC federated web search track, FedWeb13 and Fed-
Web14, for testing collection fusion. For data fusion, it is
typical to use existing runs submitted to TREC based on
which a merged list is created. We experiment with two
years of TREC Web Track data, WebTrack09 and Web-
Track10, where measures capturing both precision and di-
versity (e.g., α-NDCG@k) of a ranked list can be evalu-
ated using the sub-topic relevance judgments. The exper-
imental results demonstrate that integrating vertical sig-
nals significantly improves retrieval effectiveness for collec-
tion fusion. We further show that, for both fusion scenar-
ios, the performance of models with deep structures consis-
tently outperforms standard baselines [17], state-of-the-art
approaches [11, 7, 41], and models with shallow structures.

Since λ-Merge focuses on combining results from different
query reformulations, features that quantify reformulation
quality and topic drift are unavailable in a more general fu-
sion scenario (i.e., only a singe query is present). One contri-
bution of our work is to introduce new effective features that
are able to characterize the quality of ranked lists. The fea-
tures we use are also more semantically informative (e.g., ag-
gregated retrieval scores), compared with the coarse features
(e.g., bi-grams or tri-grams) used in other deep structured
work [15, 20]. Although the amount of training instances
in our experiments is relatively small, the higher-level def-
inition of our features can make learning an effective deep
model possible.

After a discussion of related work, we describe in detail
the merging framework in Section 3. We then introduce
the tested environments along with the features devised for
these collections in Section 4. Section 5 shows the results
of fusion experiments using a variety of baselines and the
proposed models. We discuss and conclude the paper in
Section 6.

2For instance, vertical Game may be preferred to Enter-
tainment for query Mine Craft although both are deemed
relevant.

2. RELATED WORK
This paper presents a merging framework that uses deep

structures. This section first discusses general related work
on merging multiple result lists, followed by a brief introduc-
tion to the applications of deep structures in the information
retrieval field.

2.1 Merging Multiple Result Lists

Data Fusion

Methodologies for fusing multiple search results into a single
one can be broadly categorized into two families: data fu-
sion and collection fusion. Data fusion refers to tasks where
a query is sent to multiple retrieval models that have access
to the same document collection, and the rankings from dif-
ferent models are merged into a final single list [12, 39, 42].
One main advantage of data fusion is that often the merged
list will have greater relevance than the output of any indi-
vidual system [3]. Fox and Shaw [17] suggested several com-
bination methods; among these, CombSUM and CombMNZ
showed better effectiveness by fusing results based on nor-
malized document scores and the number of systems contain-
ing a document. A follow-up work [24] modified CombMNZ
by replacing document scores with ranks. Aslam and Mon-
tague [1] proposed to merge documents using the probability
of relevance estimated for documents at given ranks. Borda-
fuse [2] also merged documents based on the ranks and no
training data is required.

More recent developments in data fusion have laid an em-
phasis on techniques that use training queries to estimate
scores assigned to documents. ProbFuse [25] divides each re-
sult list into equal length segments, and uses training queries
to estimate the probability that a document returned in a
particular segment is relevant. SegFuse [34] takes a simi-
lar approach and modifies ProbFuse by allowing variant size
of segments. Building on these techniques, SlideFuse [26]
introduces a sliding window to estimate relevance probabil-
ity. A recent cluster-based fusion approach [22] considers
inter-document similarities created across the lists to im-
prove merging effectiveness.

Collection Fusion

Collection fusion focuses on a related yet somewhat different
task. In particular, queries are issued to document collec-
tions that are disjoint or partially overlapped, and the re-
turned results are integrated and merged into a single list
[10, 40]. Result merging is a challenging task as different
retrieval algorithms may be applied to different collections
that may have different lexicon statistics. Earlier approaches
to collection fusion [9] used simple heuristics to normal-
ize collection-specific document scores for ranking. More
recent methods approximate comparable document scores
with higher accuracy. A semi-supervised learning method
proposed by Si and Callan [38] trained a regression model
for each collection, which is used to map document scores
into their global merging scores. Shokouhi and Zobel [36]
assumed that the ranking of sampled documents is a sub-
ranking of the original collection, and estimated the merging
scores by applying curve fitting to the sub-ranking.

Collection fusion and federated search have been often
used interchangeably [35]. Web-scale federated search has
recently drawn much attention and become a common prac-
tice. To promote related research, the TREC federated web
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search track established reusable test sets from real world
search engines and their results [13, 14]. In a web setting, a
query is issued to a selected subset of engines (or verticals);
this is regarded as the task of resource selection. The re-

sult merging step then merges the returned results from the
selected resources into a single list. We only focus on the
result merging task in this paper. In TREC FedWeb 2013,
the best performing approach [31] fuses results by adapting
the reciprocal rank fusion approach [11]. For FedWeb 2014,
the best performing approach was submitted by the ICT-
NET group [18] where they fused documents by combining
signals such as ranks and text similarity.

2.2 Deep Structure Learning
Deep structured models have been successfully applied to

many language related applications such as speech recog-
nition (SR), natural language processing (NLP) and infor-
mation retrieval (IR) [4, 5, 20, 33]. Deep learning tech-
niques can learn high level abstractions from training data
which has been shown useful for both classification tasks
and semantic analysis. General structures of supervised
deep networks include the recurrent neural network (RNN),
deep stacking network (DSN), deep neural network (DNN)
and convolutional neural network (CNN) [16]. RNN de-
scribes a network that recurrently combines former acti-
vation states of hidden neurons with current input layer
features to predict the next output. It has been widely
used in SR and NLP tasks [27, 29], but not as much in IR.
Most deep learning applications in IR focus on the genera-
tion of semantic representations for queries and documents.
Deng et al. [15] first reported positive results with DSN
models. The semantic representations extracted with DSN
have higher retrieval performance than traditional learn-
ing to rank algorithms. Huang et al. [20] developed a
DNN based architecture to learn semantic models with click-
through data. Huang’s model, namely the Deep Structured
Semantic Model (DSSM), achieved significant improvements
compared to many state-of-the-art latent semantic models.
Shen et al. [29] further extended Huang’s model with a layer
of convolution and max-pooling (which is the main idea of
CNN) and obtained even better performance than DSSM.

In our work, we choose the general structure of DNN as
the network for the fusion task. Compared with other deep
learning models, DNN has a structure that is simple and
generative. With proper design of the loss function in the
output layer, DNN can be applied to most classification and
optimization problems, and it is easier to train than DSN.
CNN showed better performance than DNN in tasks of la-
tent semantic analysis; however, it does not fit our problem
since our training instances consist of features that have a
fixed number of dimensions as opposed to a sequential struc-
ture. Similar to CNN, RNN is also not appropriate for our
task, which leaves DNN as our best choice.

3. MERGING MULTIPLE RESULT LISTS
Developing effective methods for fusing multiple ranked

lists of documents is crucial to many applications. Con-
ventionally, unsupervised approaches use retrieval scores or
ranks to determine the final ranking of documents in a merged
list. These methods have merits that they require no train-
ing examples. It is, however, often the case that learning-
based approaches achieve better effectiveness, partly because
additional features are easy to incorporate and customized

objectives can be derived and optimized. This section first
introduces an existing learning-to-merge framework, λ-Merge.
We then describe our extension by introducing vertical esti-
mation and deep structures.

3.1 Preliminaries of λ-Merge
The λ-Merge approach is the first proposed merging method

that is trained using relevance judgments to directly opti-
mize retrieval metrics such as NDCG or MAP [32]. λ-Merge
considers, for a query q, a set of reformulations {q1, q2, · · · , qN}
(including the original q), and the goal is to fuse the corre-
sponding output result lists {D1, D2, · · · , DN} into a single
one. For each document d in the ith result list, λ-Merge
utilizes multiple query-document features xd

i to capture how
relevant d is to query qi. In addition, for the ith result
list returned of the ith reformulation, a vector of query-list
features zi is created to estimate the quality of that ranked
list. These query-list features mostly focused on characteriz-
ing each query reformulation’s difficulty and drift, including
features such as query clarity score or the distance between
original and rewrite queries (e.g., random walk probabilities
between queries).

The core components of λ-Merge consist of a scoring func-
tion f(xd

i ; θ) and a gating function g(zi; η), based on which
the parameters θ for features xd

i as well as η for features zi
can be learned. The model defines the final score of a docu-
ment d by re-weighting f(xd

i ; θ) with the gating component
as in Equation 1, where L is the total number of lists.

sd =

L
∑

i=1

gi · f(x
d
i ; θ) (1)

In the implementation of λ-Merge, the scoring function
f(xd

i ; θ) is carried out using a fully connected neural network
with a single hidden layer of four neurons, each having a tanh
activation function. The hidden units are connected to an
output unit, which is then re-weighted by the linear gating
function gi. The objective of λ-Merge is to produce a single
fused list with NDCG optimized. The training is done by
taking partial derivatives of sd with respect to the network
parameters θ and η.

3.2 The Proposed Framework
Now we introduce our extensions of λ-Merge. To apply

λ-Merge to collection fusion, we incorporate an extra com-
ponent that captures the quality of a vertical into the frame-
work. The idea is that the quality of a vertical in which
a document exists can affect the overall relevance of this
document to a query. Figure 1 shows the structure of our
framework. Suppose that, for a query q, we have L search
engines drawn from a set of V verticals, each search engine
producing one ranked list in response to q. Typically we
have V < L, meaning that multiple engines are adopted for
a vertical. The framework in Figure 1 first considers the fea-
ture function f(xd

i,j ; θ) derived for a document d that is in

the ith ranked list belonging to the jth vertical. The model
then re-weights f by gi, which is defined as the softmax out-
put of the feature function g(zi; η) that measures the quality
of a ranked list. Finally, we incorporate the estimation for
vertical quality by combining gi · f with hj . The weight hj

stands for the softmax output of feature function h(yj ;φ)
that captures the goodness of a vertical given the current

search context. Overall, the model produces the final docu-
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Figure 1: The proposed framework for merging results from multiple lists. The final score of a document is
determined by the document, list, and vertical feature functions based on a DNN structure.

ment score sd in the merged list using Equation 2.

sd =

V
∑

j=1

hj

(

L
∑

i=1

gi · f(x
d
i,j ; θ)

)

(2)

Inspired by the widely reported effectiveness of deep mod-
els, our second extension investigates the potential of incor-
porating multiple hidden layers in an artificial neural net-
work for the fusion task. We take the definition of deep
structures to include properties that (1.) multiple layers of
nonlinear processing units are incorporated and (2.) the su-
pervised or unsupervised learning of feature representations
takes place in each layer, with the layers forming a hierarchy
from low-level to high-level features [16]. As shown in Fig-
ure 1, the implementation of the feature function f(xd

i,j ; θ)
is based on a DNN structure.

Feature functions for scoring

We implement the scoring function f(xd
i,j ; θ) using a stan-

dard feed-forward artificial neural network that incorporates
two or more layers of hidden neurons. Formally, denoting
lk as the input of intermediate hidden layer k and o as the
output of neural network, the projection process can be de-
scribed as in Equation 3. Here Wk and bk are the projec-
tion matrix and bias term for hidden layer k, and a denotes
the activation function. The parameter space is therefore
θ = {Wk, bk : ∀k}.

l1 =W1x
d
i,j

lk =a(Wklk−1 + bk), k = 2, 3, ..., N − 1

o =a(WN lN−1 + bN )

(3)

We test the activation function a with both tanh and sig-

moid. In practice, no substantial difference was observed
and we opt for tanh in each neuron:

a(x) =
1− e−2x

1 + e−2x
(4)

Similar to the implementation of f , we design a neural
network structure separately for the list feature function
g(zi; η) = ηT zi and the vertical feature function h(yj ;φ) =
φT yj . The two networks both follow a standard feed-forward

propagation, and respectively taking query-list features zi
and query-vertical features yj as input layer signals. To de-
termine the re-weighting component gi, we propagate g(zi; η)
through a softmax smoothing function as shown in Equa-
tion 5, where L denotes the number of input rank lists. The
same is done for hj using Equation 6. In theory, these two
weighting networks can incorporate deep structures as in the
document scoring network f(xd

i,j ; θ). This will require con-
siderably more training data since list and vertical features
are sparser than document ones; we thus choose to leave it
as a shallow network.

gi =
exp(g(zi; η))

∑L

k=1 exp(g(zk; η))
(5)

hj =
exp(h(yj ;φ))

∑V

k=1 exp(h(yk;φ))
(6)

Optimizing retrieval performance

The result merging task seeks a single ranked list by fusing
multiple ones with an aim of achieving retrieval effectiveness
as high as possible. Accordingly, we train the model param-
eters θ, η and φ to directly optimize NDCG@20 of the fused
list using a gradient-based approach. We note that other
measures such as MAP or Precision@k can be used.

A problem that arises with the direct optimization of
search effectiveness is that the retrieval metrics are discon-
tinuous with respect to document scores3. To overcome the
discontinuity of the objective, Burges et al [6] suggests it is
sufficient to define the λ functions for which some objective
C exists (as opposed to defining C directly). This technique
is also used by the λ-Merge model. In our framework, it is
sufficient to learn the model by implementing the gradients
with respect to the model parameters θ, η and φ; that is,
our goals are to compute ∂C

∂θk
, ∂C

∂ηk
and ∂C

∂φk
.

The computation for these gradients can be decomposed
using chain rule. Take θk as an example; we compute ∂C

∂θk
=

∂C
∂sd

· ∂sd
∂θk

where the index d is summed over. The former

part ∂C
∂sd

can be solved by the λ functions in LambdaRank

[8] as in Equation 7. Here, d ≻ j denotes that d has a larger
relevance label than j, meaning that d should be ranked

3Metrics are determined by the ranks sorted by scores rather
than the actual scores.

search context. Overall, the model produces the final docu-

search context. Overall, the model produces the final docu-
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above j. |∆NDCG@20| denotes the variation in NDCG@20
when the two documents d and j are swapped.

∂C

∂sd
=

∑

j;d≻j

−1

1 + e(sd−sj)
|∆NDCG@20| (7)

To solve ∂C
∂θk

, we further need to calculate the latter part
∂sd
∂θk

of the decomposition. Taking the fact that only the

document scoring network involves θ, the gradients can be

done as in Equation 8. The update process of
∂f(xd

i,j ;θ)

∂θk

follows the general algorithm of back-propagation (BP).

∂C

∂θk
=

∂C

∂sd
·
∂sd
∂θk

=
∂C

∂sd
·

V
∑

j=1

hj

(

L
∑

i=1

gi ·
∂f(xd

i,j ; θ)

∂θk

)

(8)

Likewise, for ∂C
∂ηk

and ∂C
∂φk

, we need to solve ∂sd
∂ηk

and ∂sd
∂φk

as we already know ∂C
∂sd

. The computation can be done as

in Equations 9 and 10.

∂sd
∂ηk

=

V
∑

j=1

hj

(

L
∑

i=1

∂gi
∂ηk

· f(xd
i,j ; θ)

)

(9)

∂sd
∂φk

=

V
∑

j=1

∂hj

∂φk

(

L
∑

i=1

gi · f(x
d
i,j ; θ)

)

(10)

Since the output of re-weighting network g(zi; η) goes through
a softmax smoothing before being incorporated into the model,
the partial differential equations are transformed according

to Equation 11, where ∂g(zi;η)
∂ηk

can be inferred through the

process of BP. Similar computation can be done for
∂hj

∂φk
by

replacing Equation 11 with the corresponding parameters.

∂gi
∂ηk

=
βi

∂g(zi;η)
∂ηk

∑L

j=1 βj − βi

∑L

j=1 βj
∂g(zj ;η)

∂ηk

(
∑L

j=1 βj)2

βi = exp(g(zi; η))

(11)

4. TEST BEDS AND FEATURES
Our experiments are conducted in both collection and

data fusion environments. This section describes the se-
lected test sets for each environment, and discusses the fea-
tures in detail.

4.1 Collection Fusion Test Sets
Collection fusion refers to search tasks where a query is

issued to disjoint or low overlap document collections, and
a single ranked list of blended results is created. To this
end, we use test sets derived from the TREC federated web
search track in years 2013 and 2014. The main reason for
using FedWeb collections is that the track provides test sets
in a more realistic web setting. Specifically, the documents
were collected from real web search engines as opposed to ar-
tificial ones such as those created by dividing existing TREC
collections by topic or source [19]. The test sets contain the
actual results of approximately 150 real web search engines
drawn from a fixed set of 24 verticals, each providing their
own retrieval method and heterogeneous content types such

as news, travel, social etc. In each year, 50 official queries for
the result merging task were created, and up to 10 ranked
results were crawled and stored from each of the search en-
gines4. We note that only the ranks are stored and no score
information is available. Graded relevance judgments are
gathered for these queries, following the conventions used in
TREC web tracks, in 5 levels {Nav, Key, HRel, Rel, NRel}.
The main evaluation metric used in the FedWeb track is
NDCG@20.

For both years of data, one characteristic of the document
collections is that search engines can return duplicate doc-
uments, although stored as different document identifiers.
This can happen even within a search engine, meaning that
this engine unexpectedly returned the same documents. To
prevent rewarding merged search results containing dupli-
cate (relevant) content, we pre-process the document collec-
tions using two steps. First, for each ranked list, we keep
only one copy of a document and discard any subsequent du-
plicates. The remaining documents are sequentially moved
to lower ranks following the original order. After the first
pass of processing, we check if duplicates exist across differ-
ent ranked lists for a given query. We assign the inter-list du-
plicates the same document identifier so as to let the merging
framework know that they are actually the same. The offi-
cial lists of duplicate documents can be obtained from TREC
FedWeb13 and FedWeb14 sites, which were produced based
on a number of heuristics such as identical smoothed URLs.

4.2 Data Fusion Test Sets
Data fusion techniques combine the ranked lists of multi-

ple document retrieval systems to improve search coverage
and precision. Different from collection fusion, the retrieval
systems operate on the same set of documents in general,
and thus the overlap rate across lists is much higher. Con-
ventionally, existing runs submitted to TREC are used to
evaluate this task. We experiment with two years of TREC
Web Track data, WebTrack09 and WebTrack10. Using these
newer data sets for experiments provides the advantage that
we are able to evaluate not only precision but also the diver-
sity of a ranked list based on the sub-topic relevance judg-
ments. The test set of each year consists of 50 queries; 71
and 56 runs were submitted to 2009 and 2010 respectively.
We randomly sampled 30 ranked lists from each year for the
merging experiments.

4.3 Features
Our framework inherits the property of λ-Merge where

features approximating document relevance and list quality
are employed together for predicting document scores. We
further incorporate vertical features in addition to those two
categories. Table 1 shows an overview of the feature set used
for the experiments, which we describe in detail below.

Document features.

Denoted as xd
i,j , document features are used to describe the

relation between a query and a document. In Table 1, the
rank features correspond to positions where a document is
assigned in a list. Reciprocal rank score 1/(60 + rank) is
incorporated for its reported effectiveness [11].

Typically a document should be promoted in the final
ranked list if more search systems deem it relevant. As such,

4FedWeb13 stores both snippets and documents of results
while FedWeb14 only stores snippets
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Table 1: Document, list and vertical features used for learning to merge results. Partial features are only
applicable to either FedWeb (F) or WebTrack (W). N denotes the total number of documents in a result list.

Feature Descriptions Avail

query-document feature
Rank rank, 1/(60+rank) F, W
Co-exist number of lists a document exists F, W
Exist exist-within/original-length F
Score retrieval scores, normalized retrieval scores, weighted scores F, W

query-list feature
mCo-exist mean of document co-exist scores of entire list F, W
mCo-exist-k mean of document co-exist scores of top k results, k ∈ {10, 20, 30} W
mScore mean of document (normalized) scores F, W
Ratio-1 ratio of documents with co-exist > 1 to N F, W
Ratio-k% ratio of docs with co-exist > k% of retrieval systems to N , k ∈ {20, 40, 60, 80} W
RatioRet ratio of number of returned results to number requested F
RatioDup ratio of number of remained documents after de-duplication to number returned F

query-vertical feature
vmScore mean of mScore of the ranked lists a vertical has for a query F
vmCo-exist mean of mCo-exist of the ranked lists a vertical has for a query F
vRatio-1 mean of Ratio-1 of the ranked lists a vertical has for a query F

Figure 2: Relation between aggregated document
co-exist scores and list performance using Web-
Track09.

the co-exist feature counts the number of result lists (i.e.,
search systems) in which a document appears. In the special
case of FedWeb test sets, we also consider the property that a
document can appear more than once in a list. The number
of duplicates of document in a list divided by the original
list length is included as a feature, which is denoted as the
exist feature.

The score features reflect how relevant a ranker believes
a document is to a query. We use two retrieval systems to
estimate the score, including a query likelihood model and
a sequential dependency model [28]. We also consider the
zero-one normalized scores, and the weighted scores com-
puted by taking products of co-exist and normalized scores.
Finally, the same computation applies to scores from runs
submitted to TREC when available.

List features.

Since the focus of λ-Merge is to combine results from dif-
ferent query reformulations, the emphasis for list features is
mostly around the reformulation quality and its drift from
original query, which is seldom available in a more general

Figure 3: Relation between list ratio scores and list
performance using WebTrack09.

fusion setting. To propose more features that may be useful
for quantifying list quality, we conduct a preliminary anal-
ysis on the retrieval effectiveness of different ranked lists.
We hypothesize that better effectiveness of a list is related
to whether the documents in that list are also returned by
other search systems frequently. In particular, we compute
the average co-exist scores of documents in a list, and plots
its relation to the retrieval performance of the correspond-
ing lists, as shown in Figure 2. The x-axis is constructed by
bucketing the normalized P@30 scores for all ranked lists,
and the y-axis shows the corresponding average co-exist
scores for lists in that bin. The same is done for the top k
results, where k ∈ {10, 20, 30}. Figure 2 shows consistently
strong evidence that better performing ranked lists usually
have more documents that appear across multiple lists. We
accordingly incorporate mCo-exist and mCo-exist-k into the
query-list features set. Note that we compute mCo-exist-k

only for WebTrack since a ranked list from FedWeb only has
up to 10 results.

Based on a similar idea, we correlate the percentage of
documents that appear in more than one search engine (i.e.,
documents with co-exist > 1) with the performance of ranked
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lists, as shown in Figure 3. We observe that retrieval per-
formance is higher when a larger set of documents appear
in more than one ranked list (see Ratio-1 ). We further in-
spect how the trend changes w.r.t. the coverage over search
systems. That is, in addition to examining documents with
co-exist > 1, we conduct the same analysis for co-exist larger
than k percent of total number of search systems (e.g., we
count documents with co-exist > 6 given 30 ranked lists
and k = 20%). Compared with Ratio-1, Ratio-k% in gen-
eral shows a similar trend but the gaps between performance
buckets appear larger, indicating a higher potential of dis-
tinguishing ranked list quality. When k grows to 40% or
60%, we see it is not always true that best performing lists
have the largest Ratio-k%. This may imply that the list
performance, while being highly positively correlated, is not
solely determined by co-existence.

We adopt the mean score features (i.e., mScore) as in the
λ-Merge work5. Lastly, for the FedWeb test sets, we include
two additional features for quantifying the quality of ranked
lists. Although FedWeb was created by requesting 10 results
per search engine, there are cases where less than required
were returned, which we hope to capture by the RatioRet

feature. Recall that duplicates can be returned by the same
engine for a query. RatioDup computes the ratio of number
of remained documents after de-duplication to the number
returned. These two features are designed to reflect the
stability of the black box search engines.

Vertical features.

Intuitively, the quality of a vertical depends on the quality of
the ranked lists it contains for a query. We accordingly de-
vise features that take the average of list features across the
ranked lists a vertical includes. Deriving vertical features is
highly related to the task of vertical selection introduced in
FewdWeb 2014 [14], where the goal is to classify each query
into a fixed set of 24 verticals. The top performing sys-
tems of this task assembled together the results of different
techniques; for example, the similarity of vertical and query
terms [18] and matching WordNet synonyms for queries and
verticals [21]. As our focus is to investigate the utility of
incorporating vertical estimates rather than exhausting all
possible features, we leave more exploration of feature design
as future work.

5. EXPERIMENTS
This section first introduces the setup for the experiments,

followed by a detailed presentation of evaluation results tested
under a variety of scenarios.

5.1 Experimental Setup and Baselines
Our experiments are conducted using four TREC collec-

tions as mentioned in Section 4. In each test case, a total
number of 50 queries with associated graded relevance judg-
ments are available. When learning is needed, we split train-
ing and test data into 5 folds and perform cross-validation.
We evaluate using NDCG@K, as well as α-NDCG@k when
sub-topic relevance judgments are available. We train all
neural-based models for 25 epochs with learning rate 5·10−3.
Pairwise t-test is conducted when appropriate.

5Other moments such as variance, skewness or kurtosis could
be considered; we excluded those due to lower effectiveness
in our experiments.

We compare the results of our framework with three cat-
egories of baselines:

• Score fusion. CombSUM and CombMNZ proposed by
Fox and Shaw [17] serve as standard baselines with
which new algorithms are compared [11, 22]. We con-
sider CombMNZ as our baseline since it often outper-
forms CombSUM. Equation 12 computes CombMNZ
that considers the product of the number of lists con-
taining d and the summation of normalized scores from
each ranking.

CombMNZ = |{k : d ∈ Dk}|·
∑

k:d∈Dk

NScore(d) (12)

• Rank fusion. Cormack et al. [11] proposed a simple
and yet very effective method, reciprocal rank fusion
(RRF), for combing searches. RRF sorts the docu-
ments using the formula given in Equation 13, where
c = 60 is fixed during their pilot investigation. Simple
as is, RRF was shown to invariably improve the best
of the combined results (including runs with learning-
to-rank methods), and outperformed established meta-
ranking standards Condorcet Fuse [30] and CombMNZ.
The best performing approach in FedWeb 2013 [31] is
based on modifying RRF with logarithm and square
transformation. We use RRF as a strong baseline.

RRFscore =
∑

k:d∈Dk

1

c+ rank(d : Dk)
(13)

• Learning to rank. The merging problem can also be
cast as a learning to rank problem. A general LTR
setting requires one representation per document; how-
ever, in a merging environment, documents can appear
as several copies in different ranked lists. To address
this, we transform the feature representation from the
fusion task by taking the average of feature values for
documents that have several copies. With the trans-
formed feature vector, we can easily use any exist-
ing LTR method to sort the documents. In particu-
lar, we adopt the original gradient decent approach,
RankNet [7], and its state-of-the-art variant, Lamb-
daMART [41], in our experiments.

5.2 Performance on TREC FedWeb
Table 2 shows the retrieval performance tested on the Fed-

Web 2013 and 2014 collections. We denote our approach as
LTM-Deep for that it is essentially a framework for learn-
ing to merge using deep structures. In each year’s data, we
compare the proposed framework with a number of baseline
approaches, including two runs of CombMNZ that are gen-
erated based on normalized query likelihood or sequential
dependency model [28] scores6. Among the baselines, we
see that RRF is very competitive, even though its core idea
is rather simple and it requires no training examples. The
LTR group tends to perform better in NDCG@20, which is
both the main evaluation metric in the track and the cho-
sen optimization metric. In general, LambdaMART appears
more effective than RankNet.

6Recall that no score information is available in FedWeb; we
use two retrieval systems as alternatives.
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Table 2: Performance of tested techniques on FedWeb 2013 and FedWeb 2014 test sets. The source includes
document (D), list (L) and vertical (V) features. The best results are marked bold. The improvement
percentage and pairwise t-test are applied when comparing LTM-Deep (D+L+V) to the rest of approaches
(† is denoted for p-value < 0.05).

TREC FedWeb 2013
Source Method NDCG@10 NDCG@20 ∆N@10% ∆N@20%

D
CombMNZ-QL 0.545† 0.476† 7.38% 20.49%

CombMNZ-SD 0.547† 0.475† 6.89% 20.84%

RRF 0.572 0.508† 2.27% 12.95%

D+L

LTR-RankNet 0.526† 0.483† 11.28% 18.77%

LTR-LambdaMART 0.515† 0.491† 13.59% 17.00%

LTM-Shallow 0.553† 0.567 5.88% 1.31%

LTM-Deep 0.565 0.573 3.54% 0.17%

D+L+V

LTR-RankNet 0.570 0.573 2.63% 0.17%

LTR-LambdaMART 0.556† 0.572 5.22% 0.35%

LTM-Shallow 0.574 0.572 1.88% 0.31%

LTM-Deep 0.585 0.574 - -

TREC FedWeb 2014
Source Method NDCG@10 NDCG@20 ∆N@10% ∆N@20%

D
CombMNZ-QL 0.577† 0.485† 8.63% 23.17%

CombMNZ-SD 0.580† 0.481† 8.05% 24.25%

RRF 0.594† 0.504† 5.48% 18.50%

D+L

LTR-RankNet 0.554† 0.503† 13.26% 18.74%

LTR-LambdaMART 0.550† 0.515† 13.92% 15.85%

LTM-Shallow 0.583† 0.574† 7.57% 4.08%

LTM-Deep 0.599† 0.574† 4.76% 4.08%

D+L+V

LTR-RankNet 0.601† 0.572† 4.33% 4.37%

LTR-LambdaMART 0.602 0.576 4.15% 3.65%

LTM-Shallow 0.624 0.565† 0.56% 5.65%

LTM-Deep 0.627 0.597 - -

For LTM-Deep in FedWeb 2014, the results suggest that
incorporating vertical signals (i.e., D+L+V) improves sig-
nificantly the performance compared to that without (i.e.,
D+L). The trend is similar in FedWeb 2013. For other
learning-based approaches, including the LTR group and
LTM-Shallow, it is clear that the model with vertical es-
timate consistently achieves better performance, confirming
our hypothesis that vertical quality helps improve the fusion
task.

LTM-Deep further outperforms LTM-Shallow in most cases,
and the improvement in NDCG@20 is significant in Fed-
Web 2014. Despite the scarcity of training data, the results
show that merging ranked lists with deep structures can be
a promising direction, and we expect the improvement will
be more evident with more training data. Overall, LTM-
Deep shows the best performance across different baselines,
measures and collections.

5.3 Performance on TREC WebTrack
The experimental results for WebTrack 2009 and 2010 are

shown in Table 3. In addition to NDCG@k, we evaluate the
results using the diversity measure α-NDCG@k based on
sub-topic relevance judgments. The vertical component is
omitted for data fusion experiments since all ranked lists are
from the same vertical. Here, CombMNZ is generated using
the normalized scores from runs submitted to TREC. In
WebTrack09, RRF and LambdaMART again demonstrate
better effectiveness among the baselines, while the RankNet
method also appears highly effective in terms of precision.

The LTM group demonstrates overall the most effective
results compared with the standard baselines and the LTR
group. The LTM-Deep approach further achieves better per-
formance than LTM-Shallow in terms of precision and diver-
sity for both years. The improvement is significant in Web
Track 2010. Similar to the results in collection fusion, LTM-
Deep shows the best performance across different baselines,
measures and collections.

5.4 Discussions
Model Design. The framework in this paper models simul-

taneously the impact of the quality of documents, ranked
lists and verticals7 for result merging. The experimental
results suggest that modeling the diverse aspects of feder-
ated search improves ranking in general. The design may
further include the features derived from specific types of
documents. Tweets, for instance, can be extracted with fea-
tures that represent recency or popularity, while for a CQA
posting, it can be helpful to include authority signals such as
the overall rating of an answer. In such cases, the document
scoring network f(xk

i,j ; θ, π1, π2, ..., πN ) will be paramterized
on θ for shared features (e.g., ranks and scores) and πi for
non-shared features, where N indicates the number of types
of documents. Since the FedWeb test collections were com-
piled to conform to a uniform style, it will be necessary to
get additional data that describes the characteristics of dif-
ferent types of documents for evaluating this design. As

7We note that vertical features are only available in a fed-
erated search scenario.
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Table 3: Performance of tested techniques on Web Track 2009 and Web Track 2010 test sets. The source
includes document (D) abd list (L) features. The best results are marked bold. The improvement percentage
and pairwise t-test are applied when comparing LTM-Deep to the rest of approaches († is denoted for p-value
< 0.05).

TREC Web Track 2009
Source Method NDCG@10 NDCG@20 α-NDCG@10 α-NDCG@20 ∆N@20% ∆α−N@20%

D
CombMNZ 0.309† 0.288† 0.201† 0.227† 20.22% 22.47%

RRF 0.337† 0.323† 0.229† 0.263† 7.05% 5.70%

D+L

LTR-RankNet 0.324† 0.309† 0.215† 0.243† 12.05% 14.40%

LTR-LambdaMART 0.314† 0.307† 0.240 0.290 12.59% -4.14%

LTM-Shallow 0.352 0.340 0.238 0.274 1.88% 1.46%

LTM-Deep 0.360 0.346 0.243 0.278 - -

TREC Web Track 2010
Source Method NDCG@10 NDCG@20 α-NDCG@10 α-NDCG@20 ∆N@20% ∆α−N@20%

D
CombMNZ 0.289† 0.281† 0.415† 0.451† 10.83% 5.76%

RRF 0.295† 0.296† 0.428† 0.465 5.17% 2.58%

D+L

LTR-RankNet 0.306 0.299 0.304† 0.340† 39.4% 40.29%

LTR-LambdaMART 0.289† 0.285† 0.404† 0.448† 9.20% 6.47%

LTM-Shallow 0.301 0.299† 0.421† 0.452† 4.15% 5.53%

LTM-Deep 0.312 0.311 0.443 0.477 - -

Figure 4: Pearson correlation coefficient ρ between
list goodness and query-list features on WebTrack10.

aforementioned, the deep structures are also possible in the
re-weighting networks for list and vertical features. This will
require obtaining additional training data.

Feature Design. One reason behind the success of our
framework, we believe, is the introduction of additional query-
list features. As mentioned in [32], query-list features such as
the mean and standard deviation of retrieval scores showed
only small improvements, while the more effective features
(e.g., reformulation scores) are not available in a general fu-
sion task. Indeed, computing the Pearson correlation coeffi-
cient between feature values and list goodness8, Figure 4
shows that the newly introduced features usually have a
higher correlation. In addition, applying the same correla-
tion analysis between document labels and query-document
features, we re-confirm that the co-exist feature is the most
effective in the data fusion environment. For the collec-
tion fusion environments, co-exist is far less correlated with
ground-truth since the overlap rate between collections is
approximately only 3% (as reported in [31]). Interestingly,
although co-exist independently is not effective enough, the
aggregated query-list feature mCo-exist is highly correlated
with list goodness with ρ = 0.7 in both FedWeb 2013 and
2014.

8We use the average of document labels in a list as a surro-
gate to approximate list goodness.

Effective features are critical to system performance. We
may explore the feasibility of incorporating the findings from
the large body of literature on query performance prediction.
In particular, post-retrieval predictors attempt to predict
the performance of a ranked list using strategies such as
measuring the divergence between the list and the entire
collection [23, 37]. Again, since the FedWeb collections use
search engines as a black box service, additional access to
the entire collection statistics may be required.

6. CONCLUSIONS
In this paper, we explored the task of result merging in an

optimization framework. The proposed model incorporated
vertical signals on the top of the feature functions for docu-
ments and ranked lists, and learned to fuse results by opti-
mizing the retrieval performance of the final list. The model
further investigated the potential of applying deep neural
networks to estimating the document feature function. We
also developed a set of general query-list features that are
effective and available for a general fusion task, compensat-
ing for the absence of specific reformulation features (e.g.,
query clarity and drift) used in λ-Merge.
We evaluated our model using two TREC FedWeb test

sets for collection fusion, and two TREC Web Track test
sets for data fusion. The results demonstrated that incor-
porating the vertical signals consistently improves the per-
formance using only document and list feature functions.
The results further showed that the LTM-Deep approach
can significantly outperform standard baselines and state-
of-art techniques.

Developing an effective optimization framework for result
merging is a complex problem. While our experiments have
shown promising results, it will be important for us to con-
sider different possibilities in infrastructure and feature de-
sign as discussed in Section 5.4. Since the effectiveness of
deep structures depends on the quality and quantity of train-
ing data, using larger test sets such as query search logs will
be important, and we expect the performance can be further
improved.
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