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Abstract

We tackle the automatic identification of non-

textual components such as tables, formulas,

pseudo-code, and miscellaneous text in tech-

nical documents. We focus on documents

in slide formats, which have been relatively

under-explored in previous studies. Identifi-

cation of non-textual components can provide

better document representation for tasks such

as clustering or information retrieval. We view

this problem as an information extraction task

and build a multi-classification model trained

on texts extracted from PDF, PPT, and HTML.

Our model can handle any format as long as

it can be converted into line-preserving plain

text. Our approach is evaluated intrinsically

on the dataset we annotated and also extrin-

sically through clustering and document re-

trieval tasks, showing noticeable improvement

on these tasks.

1 Introduction

Non-textual document components such as tables,

formulas, or pseudo-code are useful elements in

technical documents in that they deliver complicated

concepts in a visual, organized, and logical manner.

Identification of such components is an important

task for document understanding because their se-

mantics often cannot be interpreted by analyzing the

individual elements themselves. For example, each

cell in a table can be understood only if its associ-

ation with the row and the column is known. For-

mulas and code convey semantics through the logic

represented by certain conventions; without under-

standing the logic, they are simply sets of symbols,

operators, reserved words, or variable names.

The motivation of this work arose from topic clus-

tering on technical documents. During our experi-

ments, we discovered that non-textual components

introduced too much noise for clustering, caus-

ing spurious matches between documents containing

many of these components. Therefore, we hypothe-

sized that the removal of the non-textual components

would lead to improvement in clustering.

Many previous studies have suggested automatic

ways of extracting tables and formulas from docu-

ments in the PDF and OCR formats. However, most

of these approaches are limited to specific file for-

mats, which becomes an issue for systems process-

ing documents in heterogeneous formats. In this

paper, we propose a new approach for the identifi-

cation of non-textual components using plain text

extracted from files in the PDF, PPT, and HTML

formats with little to no explicit visual layout in-

formation preserved. Our approach is less format-

dependent as it only requires lines to be preserved,

and does not incur any unnecessary format conver-

sion except for the initial text extraction from the

original file. The effectiveness of our approach is

evaluated extrinsically through clustering and doc-

ument retrieval tasks, showing noticeable improve-

ment on these tasks.

2 Related Work

Douglas and Hurst (1996) proposed a determinis-

tic algorithm using white spaces and punctuation for

detecting table layout and lead-in-text as table de-

scription candidates. Various efforts have been made

for table extraction using semi-supervised learning

on the patterns of table layouts within ASCII text



documents (Ng et al., 1999), web documents (Pinto

et al., 2003; Lerman et al., 2001; Zanibbi et al.,

2004), PDF and OCR image documents (Liu et al.,

2007). Existing techniques exploit the graphical fea-

tures such as primitive geometry shapes, symbols,

and lines to detect table borders; however, no work

has attempted to process plain text extracted from

richer formats, where table layouts are unpreserved.

Lin et al. (2011) categorized existing approaches

for mathematical formulas detection by ‘character-

based’ and ‘layout-based’ with respect to key fea-

tures. Character-based approaches use features of

mathematical symbols, operators, and positions and

their character sizes (Kacem et al., 2001; Suzuki

et al., 2003). Chan and Yeung (2000) provide a

comprehensive survey of mathematical formula ex-

traction using various layout features available from

image-based documents.

Tuarob et al. (2013) proposed 3 pseudo-code ex-

traction methods: a rule based, a machine learning,

and a combined method. Their rule based approach

finds the presence of pseudo-code captions using

keyword matching. The machine learning approach

detects a box surrounding a sparse region and clas-

sifies whether the box is pseudo-code or not. They

extracted four groups of features: font-style based,

context based, content based, and structure based.

3 Corpus

3.1 Data collection

We collected two types of document sets: lecture

slides used in Data Structure and Algorithms courses

(Ddsa), and ACL’12-13 proceeding papers (Dacl).

We chose these two sets becasuse they consisted of

different ratios of non-textual components (Table 1)

such that they were complementary to each other for

better coverage of these non-textual components.

3.2 Text extraction

We extracted plain text from our datasets using sev-

eral open-source software packages such as Apache

Tika and Apache PdfBox1. These packages are

available for text extraction from various formats

including PDF, PowerPoints, and HTML. Figure 1

shows the snapshot of a table and text extracted from

1tika.apache.org, pdfbox.apache.org

it using Apache Tika. Note that the visual layout that

used to identify the non-textual components is lost.

Chinese-to-English

NIST05 NIST06 NIST08

L-Hiero 25.27+ 25.27+ 18.33+

AdNN-Hiero-E 26.37 25.93 19.42

AdNN-Hiero-D 26.21 26.07 19.54

Chinese-to-English

NIST05 NIST06 NIST08

L-Hiero 25.27+ 25.27+ 18.33+

AdNN-Hiero-E 26.37 25.93 19.42

AdNN-Hiero-D 26.21 26.07 19.54

Figure 1: The table (top) and its extracted text (bottom)

3.3 Annotation

In this study, we tackle 4 types of non-textual com-

ponents: table, code, math formula, and misc. text.

Misc. text refers to a chunk of garbled text mostly

caused by processing figures or diagrams. Any line

that is neither prose nor the other type of non-textual

components is considered miscellaneous. Further-

more, we assume that there is no overlap between

these components. We carefully created annotation

guidelines for the 4 types of non-textual components

and annotated 35 lectures slides (7,943 lines) and 35

proceeding papers (25,686 lines).

Dataset
Ratio of components (%)

Table Code Formula Misc

Ddsa 1.4 14.8 0.5 9.8

Dacl 4.0 0.6 5.0 6.4

Table 1: The ratio of non-textual components in each set

4 Features

This section introduces types of features used for our

experiments. We find line-based prediction has more

advantage over token-based prediction because it al-

lows us to observe the syntactic structure of the line,

how statistically common the grammar structure is,

and how layout patterns compare to neighboring

lines. The sequential nature of the lines is also an

important feature because the components usually

occur over a block of contiguous lines. The lim-

itation of line-based prediction is that components

that are embedded in the midst of the line either can-

not be extracted or are extracted with false positives

within the line. We leave this part as future work.



Syntactic features Lines containing non-textual

components are likely to form unusual syntactic

structures. We parsed each line using the depen-

dency parser in ClearNLP (Choi and McCallum,

2013) and extracted features such as unigrams and

bigrams, the set of dependency labels, the ratio of

each POS tag, and POS tags of each dependent-head

pair from each parse tree.

Implicit table layout Text extracted from tables

still preserves implicit layout through its string pat-

terns. Tables tend to convey the same string pattern

along the same column or row, which is frequently

parallel across multiple columns or rows. To cap-

ture the layout represented by these string patterns,

we encode each line; if the token, potentially rep-

resending one cell, is a string, we replace the token

with S, and N if it is numeric.

SSS NIST05 NIST06 NIST08

SNNN L-Hiero 25.27+ 25.27+ 18.33+

SNNN AdNN-Hiero-E 26.37 25.93 19.42

SNNN AdNN-Hiero-D 26.21 26.07 19.54

Table 2: The encoded line of the table in Figure 1

We then compute the edit distance between the en-

coded line and its neighboring lines. The idea is that

the lines in a table are likely to have the same type

of patterns nearby. However, edit distance alone of-

ten leads to false positives because it is easy to have

the same simple string patterns between two lines

that are not from tables. Having a smaller edit dis-

tance between two lines whose patterns are statisti-

cally more table-like should be a stronger evidence.

Hence we compute Pattern Language Bigram Prob-

ability (PLB), the probability of seeing an S/N se-

quence, with bigrams learned from training data.

Additionally, we use features such as the edit dis-

tance and length difference of the current and the

previous two lines, the edit distance multiply by the

line’s PLB, and the ratio of the consecutive exact

match between the current and previous encoded

lines leftwards and rightwards.

Code features We use six code patterns for the de-

tection of pseudo-code. Features include the num-

ber of tokens that use brackets (e.g., sum[i]),

that follows variable naming convention such as

camelCase or having underscore in the middle,

that are operators, and that are the number of re-

served programming keywords. Line-level patterns

inspect whether the line has comment symbols (//,

/*, */) or whether the line ends with semi-colon.

Sequential features The sequential nature of the

lines is also an important feature because the com-

ponent most likely occurs over a block of contigu-

ous lines. We train two models. The first model uses

the annotation for the previous line’s class. We then

train another model using the previous line’s pre-

dicted label, which is the output of the first model.

5 Evaluation

5.1 Intrinsic evaluation

This section reports classification results of the non-

textual components in multi-domains where two

datasets are combined as one for better generaliza-

tion. We used the Liblinear SVM classifier for train-

ing (Fan et al., 2008) and ran 5-fold cross-validation

for evaluation. As shown in Table 3, our classifier

shows above 80% F1-scores for all components.

Precision Recall F1 score

Table 92.76 75.42 83.20

Code 91.05 85.20 88.03

Formula 84.90 78.24 81.43

Miscellaneous 85.69 90.50 88.03

Table 3: Multi-domain classification accuracy trained and

tested on Ddsa and Dacl combined

5.2 Extrinsic evaluation: clustering

We generated the gold-standard clusters based on

the topics provided in the course syllabus. We used

the topic names as the initial centroids and set the

similarity distance threshold to 0.1 because not all

documents could fit in the given cluster category.

We constructed TF-IDF vectors from each document

using the top 30 terms among unigrams, bigrams,

and trigrams. Since the collection is small, we used

the Google N-gram data as more reliable collection

statistics for computing IDF.

We hypothesized that these non-textual compo-

nents hampered clustering quality so that removal

of them would improve clustering results. To verify

this hypothesis, we manually removed the compo-

nents from a subset of Ddsa (147 documents). As



Before noise-removal After noise-removal

Ddsa P R F1 P R F1 Gain

(1): Unigrams 60.06 57.24 58.62 73.80 66.61 70.02 +16.3

(2): (1) + Bigrams 76.75 68.88 72.60 77.48 69.94 73.52 +1.2

(3): (2) + Trigrams 76.83 70.83 73.71 78.63 68.60 73.28 -0.6

Dos P R F1 P R F1 Gain

(1): Unigrams 60.07 55.15 57.50 62.99 58.26 60.54 +5.0

(2): (1) + Bigrams 67.47 56.17 61.30 70.16 59.79 64.56 +5.1

(3): (2) + Trigrams 69.89 60.03 64.59 70.69 61.98 66.05 +2.2

Table 4: Clustering accuracy on the two datasets before and after noise-removal

shown in Table 5, with manual removal, the cluster-

ing accuracy improves over 7% compared to no re-

moval. Even with automatic removal, the accuracy

improves over 2%.

Prec. Rec. F1

Baseline 59.71 55.40 57.47

Automatic Removal 63.61 56.01 59.57

Manual Removal 67.23 63.28 65.20

Table 5: Clustering accuracy using manual and automatic

noise removal on a subset of Ddsa

In addition to Ddsa of 289 documents, we collected

another set of 326 lecture slides on the topic of Oper-

ating Systems (Dos). We compared clustering accu-

racy of before and after automatic removal in Ddsa

and Dos (Table 4). Removal of non-textual compo-

nents generally improved clustering results; surpris-

ingly, it made greater impact on Dos, which was not

included in our training data.

5.3 Extrinsic evaluation: document retrieval

Identifying non-textual components can improve a

document retrieval task for queries searching for

ones consisting of these components. We focused

on pseudo-code and conducted retrieval experiments

to observe how the identification of this component

would improve document retrieval.

We replaced all identified code lines in Ddsa with

<CODE> tags and created a new dataset, Dc

dsa
. We

generated 4 queries for pseudo-code: sorting algo-

rithm, shortest path, priority queue, graph traversal.

We collected the top 20 retrieved documents for the

four queries over the two dataset, and annotated the

relevance using 3 graded scale: bad, fair, and ex-

cellent, based on whether documents are topically

relevant and they contain the pseudo-code of inter-

est. Using the relevance dataset, we evaluated the

accuracy of the top 10-ranked list. Query liklihood

model was used for retrieval in Galago.2

As shown in Table 6, four evaluation metrics,

MAP, NDCG, and Precision at K = 5, 10, D
c

dsa
,

returned better ranked lists for the queries looking

for containment of a pseudo-code component. Al-

though this experiment is carried on a small scale

and the way of using component information may

be naive, this result suggests that understanding the

anatomy of documents information can be crucial

for improving information retrieval.

Ddsa D
c

dsa

MAP 0.3113 0.3741

NDCG 0.4317 0.5443

Precision@5 0.2500 0.3500

Precision@10 0.3000 0.3500

Table 6: Accuracy of the top 10 ranked list on pseudo-

code queries in Ddsa and D
c

dsa

6 Conclusion

In this paper, we presented a less format-dependent

approach to the identification of non-textual com-

ponents in technical documents. Our approach

uses line-based feature extraction to exploit gram-

mar soundness and implicit textual layout of a line,

and layout pattern matching with its neighboring

lines. We evaluated our approach on multi-domain

datasets, which showed promising performance for

the four types of components we targeted. For the

extrinsic evaluations, we demonstrated that our ap-

proach can improve both clustering and document

retrieval task.

2http://www.lemurproject.org/galago.php
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