
Incorporating Query-Specific Feedback
into Learning-to-Rank Models

Ethem F. Can, W. Bruce Croft, R. Manmatha
Center for Intelligent Information Retrieval (CIIR)

School of Computer Science
UMass Amherst

efcan, croft, manmatha@cs.umass.edu

ABSTRACT

Relevance feedback has been shown to improve retrieval for
a broad range of retrieval models. It is the most common
way of adapting a retrieval model for a specific query. In
this work, we expand this common way by focusing on an
approach that enables us to do query-specific modification
of a retrieval model for learning-to-rank problems. Our ap-
proach is based on using feedback documents in two ways:
1) to improve the retrieval model directly and 2) to identify
a subset of training queries that are more predictive than
others. Experiments with the Gov2 collection show that
this approach can obtain statistically significant improve-
ments over two baselines; learning-to-rank (SVM-rank) with
no feedback and learning-to-rank with standard relevance
feedback.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Retrieval
models

General Terms

Algorithms, Experimentation

Keywords

Learning-to-rank, query-specific feedback, relevance feedback

1. INTRODUCTION
Consider a case where there are navigational and history
related queries available in the training set. For a history
related test query, a retrieval model learned using all of the
queries in the training set might not be as good as a model
learned using queries only related to history. Training queries
that are similar to a test query can rank that particular test
query better than others.
Relevance feedback methods have been studied and used

for some time in information retrieval. Feedback is either ex-
plicit (i.e., where the user provides the relevance information
for some retrieved items of the test query) or implicit (i.e.,

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage, and that copies bear this notice and the full ci-

tation on the first page. Copyrights for third-party components of this work must be

honored. For all other uses, contact the owner/author(s). Copyright is held by the

author/owner(s).

SIGIR’14, July 6–11, 2014, Gold Coast, Queensland, Australia.

ACM 978-1-4503-2257-7/14/07.

http://dx.doi.org/10.1145/2600428.2609503 .

where the top ranked documents are assumed to be relevant).
In both cases, the main idea is to use information from the
initial search to improve retrieval performance. Relevance
feedback is performed using the top retrieved documents
to improve the retrieval by modifying the initial retrieval
model. In this work we focus on situations where explicit
feedback is available from the user for a few top documents.
This typically happens when searching for patents or intel-
ligence information where a user may be willing to spend
additional time to label the documents from an initial search
as relevant/non-relevant to improve the results for the rest
of the retrievals. We consider a setting where documents in
the top k are assessed, with the goal of improving the the
other documents ranking.

In the learning-to-rank framework [9, 17], parameters for a
retrieval model are learned based on training data consisting
of queries and associated relevant and non-relevant docu-
ments. A common approach in learning-to-rank is to use
machine learning techniques that optimize a set of weights
on joint query-document features to maximize the number
of pairs where a relevant document is ranked higher than a
non-relevant document. Figure 1 illustrates the learning-to-
rank framework. Q1, ..., Qk are the queries in the training
set and Qt is the test query.

Query1(Q1)

Queryk(Qk)

.

.

.

Querytest(Qt)

Q1, d
1
1

Q1, d
1
2

...

Q1, d
1
m

Qk, d
k
1

Qk, d
k
2

...

Qk, d
k
m

Qt, d
t
1

Qt, d
t
2

...

Qt, d
t
m

M1

Mk

M0

... ...

Figure 1: Illustration of learning-to-rank frame-
work.

Typically a learning-to-rank approach estimates one re-
trieval model across all training queries Q1, ..., Qk (repre-
sented by feature vectors), after which the test query (Qt) is
ranked upon the retrieval model and the output is presented
to the user. We extend this approach by an additional step;
we refer to the learning-to-rank model which is trained across
all queries (Q1, ..., Qk) as the initial retrieval model (M0) and
the induced ranking for the test query as initial ranking. We
target a situation where partial relevance assessments are
available on the initial ranking, for example in the top 10.
Our goal is to leverage this user feedback to improve the
ranking of unjudged documents in context to the initial rank-

ing. An obvious way of doing so is to learn a learning-to-rank
model on the partial judgments M ′ and present a ranking of
a combination of the initial model (M0) and partial model
(M ′) to the user. In this work, we evaluate an alternative
approach: we estimate learning-to-rank models Mi for each
individual training query Qi and ask “which of the Mi would
have predicted the partial annotations the best?”We take
this as a similarity measure between the test query Qt and
each training query Qi. Coming back to the running exam-
ple, we expect models of history queries to better predict
the partial annotations if the test query is about history as
well. Following this intuition, we derive a ranking for the test
query as a combination of the most similar learning-to-rank
models Mi.

Our approach is related in spirit to Malisiewicz et al. [12].
They create a number of object detectors each of which
consists of a positive example and a number of negative
ones. They conclude that their approach is better than
creating a detector using all of the positive examples together.
In another work, McCallum et al. [13] point out that the
reduction in the computational cost obtained by dividing
the data into overlapping subsets—called canopies—in the
context of efficient clustering can be performed without any
performance loss.
The main contributions of this paper are as follows: We

focus on an approach in which a retrieval model is customized
for a given test query by considering the similarity of the test
query to the queries available in the training set in the con-
text of learning-to-rank. Our aim here is to improve retrieval
results for a given test query by exploiting partial informa-
tion from an initial search for learning-to-rank problems. We
show that our approach provides statistically significant im-
provements over two baselines; a learning-to-rank (support
vector machine (SVM)-rank) baseline with no feedback and
a learning-to-rank (SVM-rank) baseline with conventional
relevance feedback.

2. RELATED WORK
Here we briefly summarize the related work about modify-
ing learning-to-rank models to improve retrieval. Lv and
Zhai [11] point out that the balance parameter of feedback to
the original query is static i.e., not adaptive for each query.
They propose the idea of adapting the balance variable for
each query to increase the retrieval accuracy. When finding
the optimal balance parameter for a query and a feedback
model, they focus on the following heuristics: 1) discrimina-
tion of a query, 2) discrimination of feedback documents, and
3) divergence between a query and feedback documents. Cao
et al. [3] indicate that in the training set, the number of rele-
vant documents may vary by query so that the final model
moves toward the queries having more relevant documents.
They address this issue by adding another parameter to the
objective function of the Support Vector Machines (SVM)
that balances the effect of the queries on the final model so
that they are less biased to the queries having more relevant
documents. Zhang et al. [19] focus on a semi-supervised
approach to capture the query-specific features such as the
unique expansion terms based on the target query in the
context of real-time Twitter search. Yue and Joachims [18]
focus on finding a retrieval function that is close to the opti-
mal one by formulating it as a bandit algorithm. Hofmann et
al. [6] study an online learning-to-rank algorithm that works
with implicit feedback as well as balancing exploration and

exploitation. Rather than modifying the objective function
in the ranker, our approach develops a better retrieval model
using queries from the training set that are similar to the
test query.
There has also been work on selecting a portion of the

training queries most similar to a test query to create better
models in the absence of feedback. Geng et al. [4] essentially
find the k-nearest neighbors for the test query and create a
new model from these k-nearest neighbors. They also discuss
modifications to speedup this process. Publicly available
datasets such as OHSUMED [5, 9] only have a small number
of training queries. On that dataset, we empirically show
that this approach does no better than a baseline SVM-rank
algorithm. Geng and colleagues in fact specifically use a
private dataset with a large number of queries and mention
that it does not do well on datasets such as Letor [16] with
a small number of queries. Our technique, on the other
hand, uses feedback documents to consider a subset of the
training set. Peng et al. [15] and Banarjee at al. [1] use a
principled component analysis (PCA) based approach to find
the nearest training queries. Our approach is to tailor the
retrieval model by selecting a number of queries to create
a model. There have been some attempts to do this [1,
4]. The motivation in this case was to find queries of a
similar type (e.g., navigational or information queries), but
no improvements were observed with smaller training sets
such as Letor.

3. APPROACH
In this paper, our main focus is to improve the retrieval per-
formance for a given test query exploiting explicit relevance
feedback information for that particular query. In addition to
using feedback documents to modify the retrieval model, we
also use the identified feedback documents to decide which
of the training queries are most similar to the test query
and consider those for retrieval. To decide which queries are
most similar, we first create individual models M1, ...,Mk

using the queries Q1, ..., Qk in the training set (e.g., one
model per query in the training set). Each of these queries
is tested against the feedback documents as measured in nor-
malized discounted cumulative gain (NDCG). A model Mi

that achieves a higher NDCG score on the partial judgments
for the test query is likely to also provide a better ranking
for the remaining documents. We assume that the query Qi

that was used to train Mi with high NDCG is more similar
to the test query than queries of models with low NDCG.

Having identified the most similar queries for a test query,
we use these queries and the feedback documents to develop a
better retrieval model. We make use of the prediction scores
obtained from the individual models (a test query Qt is run
against the individual models Mi) and partial model M ′ is
created using the feedback documents. We calculate the final
scores to rank documents with Equation 1. Sfinal is the final
score of a document in the test query for ranking. QS is a
subset of the training set containing the queries that are most
similar to that particular test query. SQi

is the prediction
score of a document in the test query against the individual
model Mi of query Qi in the training set. |QS | is the number
of queries in the QS set where S′ is the score obtained from
a partial model M ′ using the feedback documents.

Sfinal =
1

|QS |+ 1
((

∑

Qi∈QS

SQi
) + S′) (1)

4. EXPERIMENTAL DESIGN
Here we provide information about the datasets used in
this study, how to perform feature normalization, and the
evaluation technique.

Datasets: We focus on the Gov2 dataset that has 25
million documents and 150 queries [14]. In Gov2 there are
three relevance ratings, which are 0, not relevant ; 1, partially
relevant ; and 2, relevant. In order to represent document-
query pairs, we first retrieve the documents for a given
query using the query likelihood model. Then, we focus on
the top ranked 1,000 documents for that particular query
and extract the features (e.g., low-level content features,
high-level content features, and document quality features)
defined by Bendersky et al. [2] for each document. The total
number of features extracted is 102 and these features are a
superset of the features defined by Liu [10]. In order to have
a fair comparison among the methods, we only focus on the
queries with more than zero and less than ten non-relevant
documents in the feedback documents.

We also remove queries without any relevant documents in
the test set. There are approximately 42 queries left in each
fold after removing such queries. We also analyze the results
of our approach on a different dataset; OHSUMED [5] which
is also available in Letor [16]. There are 106 queries in the
collection split into five folds.

Feature Normalization: Absolute values of a feature for
different queries might be in different ranges. For this reason,
we perform query-based normalization for each feature [9].
Each feature (xi) in each document is normalized considering

other documents in the same query: xi−min(xi)
max(xi)−min(xi)

where

(min(xi)) and (max(xj)) are the minimum and maximum
values respectively of xi for all documents in the same query.

Evaluation and Learning: We split the dataset into
three folds each of which consists of a training, a validation,
and a test set. We use triple fold cross validation so that
each fold becomes a training, a validation, and a test set
once. For each fold, we use the validation set to tune the
parameters of the ranker. We focus on SVM-rank [7, 8]
with linear kernel as a learning-to-rank approach. In order
to compute the evaluation scores, we make use of the tools
provided in (research.microsoft.com/~letor/) [9]. When
we report the results for MAP and meanNDCG, we take the
average across the folds. The evaluation of our approach and
the baselines are based on the documents that are not part
of the feedback documents.

5. EXPERIMENTS
In this section, we first explain the baselines that we use
to compare our approach. Then we detail the experimental
results and discuss the efficiency of our approach.

5.1 Baselines
In order to compare the effectiveness of our approach, we
focus on two baselines. The first one considers a learning-
to-rank model with no relevance feedback. We also consider
another baseline where we apply standard relevance feedback
to learning-to-rank models using partial ground truth in top
10 initial ranking. In order to perform relevance feedback,
we combine the initial model M0 and another model M ′

using the feedback documents (we assume that we know
the relevance judgments of these documents) to improve the
retrieval in the context of learning-to-rank. According to

our validation experiments, this linear combination provides
better performance than methods in which the retrieval
model is re-trained after inserting the feedback documents
to the training set.

As discussed previously, Gent et al. [4] propose a k-nearest
neighbor technique for selecting the most similar queries to
the test set without feedback. We also consider their method
yet another baseline to compare our approach.

5.2 Results and Discussion
We disregard a number of the most dissimilar queries to the
test query and consider a subset from the training set so that
it provides a better model while ranking the documents. In
the experiments, we identify 5%, 10%, 25%, 50%, and 75% of
the most dissimilar queries and consider the rest of the queries
in the training set (i.e., 95%, 90%, 75%, 50%, and 25% of the
most similar queries) to the test query. Consider an example
where the relative similarities of queries Q1, Q2, Q3, and Q4

to the test query Qt are as follows; Q2 > Q1 > Q4 > Q3. In
other words the NDCG result for M2 (a model created using
only Q2 in the training set) is larger than the NDCG for M1.
In the “50%” case, Q4 and Q3 are the most dissimilar queries.
For the “25%” case, the query Q3 is the most dissimilar query
to the test query.

We re-implement the approach of Geng et al. [4] and test
on the OHSUMED dataset for different k values. According
to the experimental results k = 20 provides the best MAP
and meanNDCG results for the OHSUMED dataset. It turns
out that their approach (MAP 44.11% and a meanNDCG
score of 51.09%) is not better than our SVM-rank baseline
(MAP 44.75% and meanNDCG 53.45%). (note in this par-
ticular case, since there is no feedback we use all documents
–including the top-10– to compute the numbers). Given that
their approach is not better than our SVM-rank (without
relevance feedback) baseline, we only provide the SVM-rank
baseline without relevance feedback and with relevance feed-
back in comparison to our approach.
Table 1 shows MAP and meanNDCG scores for the base-

lines as well as the scores of our approach. First two rows
(SVM-rank w/o RF and SVM-rank w/ RF) provide the re-
sults for the baselines on the Gov2 dataset and the rest shows
the results of our approach in the same dataset. We ignore
5%, 10%, 25%, 50%, and 75% of the most dissimilar queries
from the training set. We report retrieval effectiveness in
terms of MAP and NDCG in Table 1.

Table 1: Gov2 results on our approach (5%, 10%,
25%, 50%, and 75%) as well as the baselines (SVM-
rank w/o RF and SVM-rank w/ RF). Method: 5%,
10%, 25%, 50%, and 75% of the most dissimilar
queries are ignored from the training set based on
the partial information out of the test query.

Method MAP meanNDCG

SVM-rank w/o RF 0.3761 0.5875
SVM-rank w/ RF 0.3825 0.5965

5% 0.3910 0.5981
10% 0.3933 0.6005
25% 0.3984 0.6068
50% 0.4006 0.6116
75% 0.3960 0.6073

Figure 2: MAP and meanNDCG scores for the
OHSUMED dataset.

We obtain the best results when we ignore half of the most
dissimilar queries from the training set (see Table 1). The
results for the 25% case are very close to the 50% case. When
more queries are ignored, some number of similar queries are
most likely ignored as well. Likewise, when we ignore fewer
queries, then we will leave some number of dissimilar queries
in the training set. Our best scores (obtained for the 50%
case) provide statistically significant improvements (ρ < 0.05)
over the baseline without relevance feedback (SVM-rank w/o
RF in Table) in all of the folds for MAP and meanNDCG,
and for majority of the folds for MAP and meanNDCG when
we consider the baseline with relevance feedback (SVM-rank
w/ RF in Table). When we compare two baselines (i.e.,
a learning-to-rank (SVM-rank) baseline with no feedback,
and a learning-to-rank baseline with relevance feedback),
relevance feedback shows improvements over the case where
no feedback is applied.
Analyzing the results on the OHSUMED [5] dataset; in

Figure 2 with respect to MAP and meanNDCG, we also
observe a very similar pattern to the Gov2 set. Ignoring
50% of the dissimilar queries from the training set yields
the best results in terms of MAP and meanNDCG. We
evaluate our approach for the case where different numbers
of documents are available for training and test queries. The
number of documents sub-sampled to create learning-to-rank
representations are much lower in the OHSUMED case than
the Gov2 case (1000 vs. approx. 200).

In our approach, we create individual models for the queries
in the training set. However, this process can be completed
offline since the training set is available ahead of time and
the queries in the training set are independent of the test
query. The operations such as creation of a model using the
feedback documents and testing feedback documents against
individual models should be performed online. However,
these processes can be completed in a couple of milliseconds
since we only use a small number of feedback documents (10
in our experiments).

6. CONCLUSION
In this work we explore a query-specific modification of
learning-to-rank approaches. We make use of the feedback
documents to improve a retrieval model using queries in the
training set that are similar to a particular test query. We
evaluate our approach on the Gov2 and OHSUMED dataset
with two baselines; a learning-to-rank (SVM-rank) baseline
with no relevance feedback and a learning-to-rank (SVM-
rank) baseline with standard relevance feedback using partial
ground truth. In our experimental evaluation, we obtain
statistically significant improvements using our approach
over such baselines by exploiting the partial information of a
particular test query.
Several future directions are promising. First, we would

like to study the effect of the number of available feedback

judgments. Next, we target query-based similarity functions
to avoid the need for feedback judgments.

7. ACKNOWLEDGEMENTS
This work was supported in the Center for Intelligent Infor-

mation Retrieval. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect those of the sponsor. I
would like to thank Laura Dietz for her valuable comments.

8. REFERENCES
[1] S. Banarjee, A. Dubey, J. Machchhbar, and

S. Chakrabarti. Efficient and accurate local learning for
ranking. In Learning-to-rank Worshop SIGIR, 2009.

[2] M. Bendersky, W. B. Croft, and Y. Diao. Quality
biased ranking of web documents. In WSDM, 2011.

[3] Y. Cao, J. Xu, T.-Y. Liu, Y. Huang, and H.-W. Hon.
Adapting ranking SVM to document retrieval. In
SIGIR, 2006.

[4] X. Geng, T. Liu, T. Qin, A. Arnold, H. Li, and S. H.
Query dependent ranking using k-nearest neighbor. In
SIGIR, 2008.

[5] W. Hersh, C. Bukley, T. Leone, and D. Hickman.
Ohsumed: An interactive retrieval evaluation and new
large test collection for research. In SIGIR, 1994.

[6] K. Hoffmann, S. Whiteson, and M. Rijke. Balancing
exploration and exploitation in learning to rank online.
In ECIR, pages 251–263, 2011.

[7] T. Joachims. Optimizing search engines using
clickthrough data. In KDD, 2002.

[8] T. Joachims. Training linear SVMs in linear time. In
KDD, 2006.

[9] T. Liu, J. Xu, T. Qin, W. Xiong, and H. Li. Letor:
Benchmarking learning to rank for information
retrieval. In SIGIR, 2007.

[10] T.-Y. Liu. Learning to rank for information retrieval.
Foundations and Trends in IR, 3(3):225–331, 2009.

[11] Y. Lv and C. Zhai. Adaptive relevance feedback in
information retrieval. In CIKM, pages 255–264, 2009.

[12] T. Malisiewicz, A. Gupta, and A. Efros. Ensemble of
Exemplar-Svms for object detection and beyond. In
ICCV, 2011.

[13] A. McCallum, K. Nigam, and L. H. Ungar. Efficient
clustering of high-dimensional data sets with
application to reference matching. In KDD, 2000.

[14] D. Metzler, T. Strohman, H. Turtle, and W. B. Croft.
Indri at trec 2004: Terabyte track. Technical report,
DTIC Document, 2004.

[15] J. Peng, C. Macdonald, and I. Ounis. Learning to select
a ranking function. In ECIR, pages 114–126, 2010.

[16] T. Qin, T.-Y. Liu, J. Xu, and H. Li. Letor: A
benchmark collection for research on learning to rank
for IR. Information Retrieval, 13(4):346–374, 2010.

[17] A. Trotman. Learning to rank. Information Retrieval,
8(3):359–381, 2005.

[18] Y. Yue and T. Joachims. Interactively optimizing
information retrieval systems as a dueling bandits
problem. In ICML, 2009.

[19] X. Zhang, B. He, T. Luo, and B. Li. Query-biased
learning to rank for real-time twitter search. In CIKM,
2012.

