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ABSTRACT

User behavior information has proved valuable for inferring
document relevance, but its role in deducing relevance at
the passage/section level is not well explored. In this paper,
we study how user behavior information implies section rel-
evance, and use this information to improve section ranking.
More specifically, we focus on four types of user search be-
havior that occur while browsing a document — dwell time,
highlighting, copying and clicks at the section level. Exper-
imental results based on a commercial query log show that
user behavior information can significantly improve section
ranking. While section-level click information is a very pow-
erful signal of relevance, it depends on an interface support-
ing section-level links. We find comparable levels of gain us-
ing other behavior information that does not depend upon
such an interface.

Categories and Subject Descriptors: H.3.3 [Information

Search and Retrieval]: Search Process
General Terms: Experimentation, Human Factors

Keywords: Passage Retrieval, User Behavior, Dwell Time

1. INTRODUCTION

It is widely known that user interaction with informa-
tion retrieval systems can provide valuable information to
improve effectiveness — for example, queries and their click
patterns can be mined to associate web pages with queries
for which they are likely to be relevant.

In this study we explore what happens when those ideas
are extended from full document retrieval to section or pas-
sage retrieval. We consider the case when a section or para-
graph of a document may better address a user’s informa-
tion need than its containing document. What happens if
we combine document-level click information with section-
level ranking? What additional value is there in click details
at the section level? In cases where section-level clicking
is cumbersome or inappropriate, is there other information
that could be used to the same effect?
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This issue has received little attention to date, partly be-
cause not all data is organized such that section retrieval
makes sense and partly because few retrieval systems are
instrumented to collect user interaction data at that level
of granularity. We are fortunate to have access to a col-
lection of hierarchically organized documents with browsing
and click information recorded at the document and section
level, allowing us to explore and evaluate the utility of that
information.

In the first part of this study (Section 4), we use the brows-
ing and click information to analyze user behavior at the
section level. Our analysis focuses on four types of behav-
iors occurring while browsing a document: the time during
which a section is displayed (“dwell time”), highlighting or
copying a portion of text, clicks on links between and within
documents, and clicks on section links directly in response to
the query. The analysis gives insight into passage level user
behavior, reveals existing biases, and testifies its potential
in estimating passage relevance. We find that many section
dwell times (50% according to our dataset) are shorter than
2 seconds, suggesting users skim many sections instead of
reading them. We also discover that a bias exists for section
dwell time, which is due to non-relevant sections being ad-
jacent to relevant sections that are displayed together. For
clicks, we find a position bias due to the structure of the
documents.

In the second part of the study (Sections 5 and 6) we
evaluate the value of logged behavior to improve the ranking
of sections in response to a query. Based on the earlier
analysis, we select a set of features that are indicative of
relevance and use them to rank sections. We consider each
user behavior feature individually as well as in a group. We
confirm our hypothesis that direct query-to-section clicks are
most effective among the four types of user behaviors. Given
the value of click information at the document level, that
result is not at all surprising. However, we also show that
if section-level click information cannot be included — e.g.,
if there is no appropriate way to provide links to sections —
we can achieve half of the gain of section level clicks using
browsing-based features alone.

2. RELATED WORK

Passage retrieval has a long history within Information
Retrieval: improving document retrieval [6, 26, 27, 31, 36],
focusing query expansion [41], extracting explanatory snip-
pets, locating responses for question answering [4, 7, 18,
37], and retrieving appropriate passages [5, 36, 38, 40]. Our



study focuses on retrieving passages that are marked as sec-
tions of documents and employing user behavior information
to improve accuracy.

There is a large body of work studying user search be-
havior or “implicit measures” at the document-level: Guo
and Agichtein [23] estimate document relevance from cur-
sor movements and scrolls in addition to dwell time and
other previously studied user behavior features. Features
from user behavior analysis particularly targeted towards
web search were also investigated [1, 2].

The question of how to employ user search behavior in-
formation for estimating passage relevance and improving
passage ranking is largely unexplored. The closest work
that we find is done by Buscher et al., in which they stud-
ied segment-level display time and segment-level feedback
from an eye tracker [10, 11, 12, 13]. They hypothesized
which parts of documents being read are likely to be rel-
evant, and used those for query expansion and re-ranking
of documents. While their results showed potential for in-
ferring passage relevance by means of user behavior, they
did not investigate that problem. One other related work at
the segment level focuses on text highlighting as a form of
relevance feedback [22].

Several user studies have been performed for analyzing
the link between relevance and dwell-time [16, 28, 29, 35,
39]: in particular, these studies focus on the correlation be-
tween reading time and explicit feedback. Fox et al. [20]
analyze the relationship between explicit measures (such as
relevance judgments) and implicit measures (user behavior
information). For this, they also looked at a sequence of
characteristic user behavior patterns. Some earlier work
also utilizes dwell distributions for collaborative filtering to
predict user ratings [34]. All of that work was done at the
document level, whereas we focus here on section-level dwell
time.

Learning to rank is a well-known supervised technique
from machine learning and information retrieval for learning
a function that tries to optimally rank a list of documents
or passages. There are three major approaches: point-wise,
pair-wise, and list-wise [14, 15]. As a point-wise approach we
use RandomForests [8], a decision tree approach for which
a fully grown unpruned tree is built during the training
phase. For pair-wise approaches, where training instances
are learned together in pairs, we use Ranking SVMs [24] and
RankBoost [21]. Finally, list-wise approaches directly learn
a ranked list by optimizing an evaluation measure. We use
AdaRank [42] and Coordinate Ascent [33].

3. MOTIVATION

The motivation for this research arose during discussions
with a medical informatics company, UpToDate. UpToDate
hosts medical information that is searched on a daily basis
by a large number of physicians. UpToDate’s search engine
is based on the open source Apache Lucene system’. It has
been extensively tuned over several years, using parameter
sweeps, evaluations on subsets of users, careful editing of the
hosted information, and human intuition. A user’s query is
converted into a complex weighted combination of the orig-
inal query words, synonyms from a controlled vocabulary,
and field references.

"http://lucene.apache.org/java/docs/index.html

The collection of documents is small from the perspec-
tive of IR research or Web search: it comprises just under
16,000 high quality documents and is constantly being up-
dated by several experts in the field (physicians) according
to the most recent medical findings. These documents are
hierarchically arranged into sections and subsections. Fig-
ure 1 illustrates a document and its hierarchically arranged
sections: section H1.2.2 is contained in section H1.2, which
is in turn contained in H1.

Figure 1: Hierarchically arranged sections of a doc-
ument in our collection.

Like most search engines, UpToDate collects clickthrough
information from its users; this work relies on an anonymized
subset of this data.? Tt is well known that such informa-
tion can be used to improve document retrieval effectiveness.
However, UpToDate collects section-level click information
as well as document-level clicks. From click behavior analy-
sis (Section 4), it is evident that certain sections are heavily
favored over others. These are particularly sections sum-
marizing the content of a document or dosage information
about a certain drug. In a non-medical domain, these could
be sections summarizing a product or describing specifics
about a technique, recipe, or recommendation. Since UpTo-
Date’s current system only ranks documents, it seems that
it would be beneficial if the results could be displayed at the
section level so that scrolling through the document becomes
unnecessary when appropriate.

Currently, the section-level clicks are collected in several
ways. In response to a query, a user may click on a docu-
ment in the ranked list of results, or may hover over the title,
causing an outline listing of all the headings with the doc-
ument to be displayed. A rollover click is triggered when
the user clicks a section heading in that preview rollover
panel. When a document is displayed — whether because it
was selected directly or a section was chosen — the outline
is displayed to the left of the document. An outline click,
then, is triggered through a click on that outline. Finally,
a see link is logged when a user clicks on a link within a
section’s text leading to another section (e.g., “see also...”).
This type of click is the only one that does not require an
outline structure in documents.

In addition to click information, our anonymized log in-
cludes other search behavior information: every half second
the log captures which text is highlighted by the mouse and
whether the user has “copied” the highlighted text. From
this we can determine the time a user spends with a single
section displayed, or the dwell time for that section. We
stress that these actions do not require an outline structure

2 Although it receives a substantial number of queries each
day, the volume is small compared to major search engines:
our collection contains around 18 million queries per month
compared to the more than 13 billion queries Google is es-
timated to have handled this past March [17].



in the documents; they do not necessitate changes to the in-
terface, and can be logged in the background by the browser
using JavaScript or similar technologies.

Our goal is to explore the impact of section level fea-
tures from four different classes of user search behavior in-
formation: dwell time on sections, highlighting or copy-
ing of text within sections, “see link” clicks, and outline
or rollover clicks. The baseline search system we use is a
carefully crafted Lucene implementation incorporating var-
ious scores such as tf-idf and document-level clickthrough
information. This means we are constrained to combining a
carefully crafted Lucene score with hierarchical content and
user behavior information from sections — in the same way
that much learning-to-rank research includes system-level
scores such as BM25 and tf-idf. We leave for future work
approaches that expose the inner workings of the Lucene
black-box system and integrate specific content information
more elaborately.

Before diving into the details of learning better section
retrieval, we first present an analysis of search behavior on
our anonymized query log to understand the underlying data
and to be able to do better feature engineering.

4. USER BEHAVIOR ANALYSIS FOR SEC-
TION RETRIEVAL

In this section we present an analysis of the different types
of section level behaviors. First we explore dwell time, and
then we move on to highlight and copy operations. Finally,
we analyze the three types of section-level clicks. The anal-
ysis is based on the query log with the training query set,
described in Section 6.1.

4.1 Dwell

4.1.1 Dwell distribution

Every half second, our log notes which sections are dis-
played on the screen. Given this information, we extract
section dwell times, which capture the time when a section
starts being displayed until the section is not rendered in the
user’s screen anymore. We compare the section dwell time
distribution to the document dwell time distribution in Fig-
ure 2. Similar to Liu et al. [32], document dwell times are
extracted as the time difference between the opening and
closing actions to a document. The closing action is per-
formed either by closing the page, issuing a new query, or
by clicking and being directed to other documents.

We can see from Figure 2 that the document dwell dis-
tribution is skewed in our data set like in other studies [32,
30]. Moreover, we find that the section dwell distribution
is even more skewed. The cumulative probability achieves
50% when the dwell time is 2 seconds. This indicates that
many section dwell times are extremely short, which are
more likely to be generated by skimming sections than ac-
tually reading them. 96% of section dwells are short — less
than 100 seconds — while there are only 58.5% of document
dwells that are less than 100 seconds.

The right part of Figure 2 shows the dwell distribution
using frequencies with dwell times binned by 1 second. Sec-
tions have many short dwells, and starting from around 145
seconds, documents have more long dwells than sections.
The sudden drop for section dwell frequency in the Figure
is at 960 seconds, from frequency 2256 to 1858, which is
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Figure 2: Document and section dwell time distri-
bution. Left: cumulative distribution. Right: fre-
quency distribution.

actually exaggerated by the log-scale. A difference of 398
in frequency is actually small for this 4 month data set. It
could have been generated by one single user, who used the
system in around 16-minute intervals, which is likely to be
the average meeting time for a patient.

4.1.2 Dwell and Section Relevance

Similar to the assumption that long dwell times indicate
(document) relevance [16, 20, 35], we hypothesize that long
section dwell times indicate section relevance. We test this
by using two ways of aggregating section dwell times across
different users when searching for the given query - cumu-
lative dwell time and average dwell time. Cumulative
dwell time sums up all the dwells for a section given the
query across different users, while average dwell normalizes
cumulative dwell time by the number of dwells.

In Figure 3, we show the cumulative dwell time and av-
erage dwell time for sections of different relevance ratings.
Clearly, sections of higher relevance ratings have higher dwell
times according to the mean value, for both cumulative dwell
time and average dwell time, from ratings 1 to 4. But the
trend is reverse from ratings 4 to 5, which indicates a dis-
agreement between dwell times and our human judgment for
“perfect relevance”.
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Figure 3: Dwell time for sections of different rele-
vance ratings. Error bars show 95% confidence in-
tervals. Left: cumulative dwell time. Right: average
dwell time.

In the right part of Figure 3 we can see that users dwell
around 48 to 55 seconds on average for relevant sections,
suggesting that this is likely to be the average time users
spend on reading relevant sections in our data set. Inspired



by this, we define a relevant section view to be a section
dwell that is longer than a certain threshold. We tune the
threshold to optimize MAP of ranking results based on the
relevant view frequency using our train queries. As shown
in Figure 4, the optimal threshold is 49 seconds, consistent
with the average dwell time for relevant sections in Figure 3.
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Figure 4: MAP for relevant view frequency using
different thresholds, cumulative dwell time, and av-
erage dwell time.

In Figure 4, we also compare the effectiveness of ranking
sections using the three ways of aggregating dwells. As we
can see, cumulative dwell time and relevant view frequency
are much better than average dwell time in ranking sections.
Relevant view frequency is slightly better than cumulative
dwell time when using the optimal threshold.

4.1.3 Dwell Bias

Even though a correlation exists between dwell time and
section relevance, we also find a bias for section dwells.
When users read a relevant section, often adjacent sections
are also being displayed on the screen. Therefore, dwell
times at a relevant section also affect the dwell times for
its adjacent sections. We test this adjacent section dwell
bias in Figure 5, which shows the cumulative dwell time for
non-relevant sections at difference distances from their clos-
est relevant section in the document. We measure distance
between two sections by the number of sections/subsections
between them, e.g. sections right adjacent to each other
have distance 1. Clearly, non-relevant sections right next
to a relevant section have a much higher dwell time than
sections at further distance, proving the existence of an ad-
jacent section dwell bias.

4.2 Highlight and Copy

While reading a document, users sometimes highlight or
copy parts of the content in the document, which is very
likely to be relevant to users’ information needs as shown by
Golovchinsky et al. [22] in a controlled laboratory setting.
Following this idea, we study the frequency of a section being
highlighted/copied when searching for a given query.

Figure 6 shows section copy and highlight frequencies of
documents while searching for a query in our training set,
where each point represents a section and a query. The x-
axis shows the copy frequency of this section when users
search for the query, and the y-axis stands for the high-
lighting frequency. We can see that highlights happen much
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Figure 5: Dwell time of non-relevant sections at dis-
tance 1 to 10, from closet relevant section. Error
bars show 95% confidence intervals.

more often than copies. For sections of copy frequency 50,
the range of highlight frequency is 151 to 841. The figure
also suggests a strong positive correlation between highlight
and copy actions. The Pearson’s correlation coefficient be-
tween copy and highlight frequencies is 0.79.
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Figure 6: Copy and highlight frequencies of docu-
ments given a query in the training set.

We test if copy and highlight frequency information im-
plies section relevance in Figure 7, which shows highlight/copy
frequencies for sections of different relevance ratings. The
figures look much like Figure 3, in which we see a clear in-
crease in highlight /copy frequencies from ratings 1 to 4, but
a drop from 4 to 5.

4.3 Clicks

Section clicks and document clicks are different in their
sources. Document clicks happen when users are browsing
document ranking, while sections clicks happen when users
are browsing within a document (for outline click and seelink
click), or reading the rollover panel (for rollover clicks in our
system). Despite the difference in sources, both document
clicks and section clicks indicate to some level that users are
interested in the document /section.

We test if the three types of clicks — outline, seelink and
rollover — indicate section relevance in Figure 8. The Figure
shows the click frequency of the three types of clicks for
sections of different ratings. The trend for rollover clicks
is similar as for dwell time in Figure 3 and highlight/copy
in Figure 7 — we can see an increase from ratings 1 to 4,
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Figure 7: Highlight/copy frequencies versus ratings.
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and a drop from ratings 4 to 5. Differently, outline clicks
increase from ratings 1 to 5 according to the mean value,
although the variation of outline clicks for sections of rating
5 is very high. Seelink clicks do not clearly correlate with
the relevance ratings.
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Figure 8: Outline/rollover/seelink Click and rating.
Error bars show 95% confidence intervals. Top left:
outline click. Top right: rollover click. Bottom left:
seelink click.

Similar to the document click bias [3], we find that clicks
can be biased by the section position in the document. In
Figure 9, we plot the outline and rollover click distribution
over section positions, as well as the section distribution over
positions, which represents the click distribution when the
likelihood of a section being clicked is equal for all sections.
We can see that except for the sections at the top of the
document, outline and rollover click distributions are close
to the section distribution. However, outline clicks at the
top 2 sections are far less than the distribution of sections.
This is probably because when opening a document, the
top part of the document is already displayed, and therefore

there is no need for users to click on the outline to get to
top sections.
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Figure 9: Percentage of sections clicks whose sec-
tions have a certain position in the document.

S. FEATURES FOR SECTION RANKING

In this section we summarize the features used for the
experiments.

5.1 Section Content-based Features

Section content-based features include features that only
depend on the section content (and the query), listed in the
first part of Table 1. The most obvious content feature is
luceneScore, which is the raw Lucene score for the section
as obtained by the search engine. Further, we measure the
percentage of overlapping title 1-5-grams between the sec-
tion and the document titles with the feature titleOverlap.
referenceProb utilizes reference or link counts between sec-
tions: it refers to the probability of the section being linked
to by other sections with respect to all the sections in all the
documents in the corpus. This is very similar to PageRank
scores[9].

In our corpus, a section can be at three levels; level 1
indicates that it is a section at the top level; level 2 means
it is a subsection with 1 parent section at level 1; and level
3 means that it is a subsubsection having 1 parent section
at level 2 and another one at level 1 (see Figure 1). The
feature level refers to the raw level numbers 1, 2, or 3.

Further, a section has a certain position within the docu-
ment, which describes the order of its placement with respect
to the other sections in the document. The feature position
denotes a raw position number, which in our corpus is be-
tween 1 and 89 (see Figure 9).

5.2 Document-based Features

Sections from relevant documents are more likely to be rel-
evant. Based on this intuition, we use two document-based
features for ranking sections, as described at the bottom of
Table 1. docLuceneScore is the raw Lucene score for the
document containing the section, obtained from the search
engine. docClickProb is the likelihood for that document to
be clicked given a query.



Table 1: Section content-based and document-based
features.

Section content

luceneScore section Lucene Score

titleOverlap overlap between section and document title
referenceProb section reference probability

level section level

position section position

Document content

docLuceneScore | document Lucene Score
docClickProb probability of clicking the
document for this query

5.3 User Behavior Features for Ranking Sec-
tions

Following our analysis on Section 4, we employ user be-
havior features based on dwell, highlight, copy and click ac-
tions for ranking sections. First, we describe the notation
used for features. Let f(-) denote a type of user behavior
features, g denote an issued query, s denote a section and d
denote the document which s belongs to. Then, we can use
f(s,q) to denote the value of feature f for section s when
searching with query ¢q. f(d,q) = > ., f(s,¢) denotes the
sum of all the feature values for sections in document d, and
flq) = >, f(d,q) denotes the sum of all feature values for
query g. As an example, let the copy frequency (described
in Section 4) be expressed as copy(-). Then copy(s,q) is
the copy frequency of section s while searching with query
q, copy(d,q) is the total copy frequency of this document
given the query, which is the sum of copy frequencies of all
the sections in document d given that query, and copy(q)
is the total copy frequency when searching with the query,
summing up all the copy frequencies for sections in search
sessions for that query.

Generally, we have three ways of aggregating/normalizing
a type of user behavior feature f. 1) The probability given
the query, Ps(s|q) = ff(iqg) This is simply a way of normal-
izing to avoid using the absolute value. For example, copy
probability (copyProb) is the copy frequency for the section
and query, normalized by the total copy frequency for the
query, or more formally Peopy(s|q) ; 2) To capture the rel-
evance of sections compared to other sections in the same
document, we use the probability given the query and doc-
ument as another way of normalization, which is denoted as

Py (sld,q) = u Es’q; For example, copy probability given the

document (copyDocProb) can be denoted as Peopy(s|d, q). 1
is the copy frequency for the section and query normalized
by the total copy frequency for the query and the document
which the section belongs to. 3) To cope with the variation of
the feature value over different queries, we use the deviation
fls, -4,
where S is the set of sections that are used to sum up f(s, q)
for f(q). For example, copy deviation (copyDevi) is the de—
viation of copy frequency from the average copy frequency
for the query.

We summarize the section level user behavior features em-
ployed in Table 2. Feature types cumuDwell and avgDwell
are cumulative and average dwell times described in Sec-
tion 4.1.1. For relevant views (relView), we used 49 sec-
onds as a threshold, which is tuned on our training queries
(see Section 4). hilite and copy stand for highlight and

from the average value for the query, (s, q) =

copy frequencies for sections. OutlineClick, rolloverClick
and seelinkClick are click frequencies for the three corre-
sponding click types. allClick is the click frequency for all
section clicks, including clicks of all the three types.

6. EXPERIMENTS
6.1 Data set

We use four months of (anonymized) query log data for
feature extraction and analysis. We sample 100 queries from
the query log, and randomly split them into 50 queries for
training and 50 unseen queries for test. To avoid biasing
parameters and training toward certain queries, the train-
ing queries are distinct from the test queries for which the
results are reported, and only train queries are used for our
analysis in Section 4. All training and test queries are pop-
ular, i.e., each query has at least 500 section clicks. We did
not include tail queries since there was a considerable dis-
agreement between the judgments of our medical expert and
the clicks of such queries.

To have a wide spectrum of sections for the evaluation,
we pooled them from five ranking lists — sections ranked by
Lucene, section clicks, cumulative dwell time, highlight fre-
quency and copy frequency. The top ranked unique sections
were pooled from each of these five lists until 100 unique
sections were collected.

Our aim in ranking the Lucene section results is to bet-
ter approximate how a medical expert would rank them.
Hence, as truth data we use judgments provided by such
an expert. For training, there are 5012 sections judged in
total, whereas for test there are 5001 judged sections. So
on average each query has around 100 judged sections. Ta-
ble 3 shows a breakdown of the judgments for each label.
We follow the PEGFB scale for these judgments labels, i.e.,
label 5 means ‘perfect’, 4 means ‘excellent’, 3 means ‘good’,
2 means ‘fair’, and 1 means ‘bad’, which the medical expert
used for judging the sections.

Table 3: Human judgments for train and test.

Label | #judgments for train | #judgments for test
1 206 227
2 1541 1560
3 1855 1520
4 1269 1572
5 141 122
sum 5012 5001

6.2 Evaluation

We tried various point-wise, pair-wise and list-wise learn-
ing to rank algorithms for our experiments, such as Ran-
domForests, RankBoost, AdaRank and Coordinate Ascent
from RankLib [19]. Many of the models yield the same kind
of results, so in Section 6.3 we present the results for two
models only, RankBoost and RandomForests.

Given a query Q, in order to evaluate its ranked list of
n sections R, we use NDCG and Precision. These are well-
known measures for learning to rank. NDCG is defined as
follows [25]:

2rel _
NDCG(Q, R) Z e 1—|—z (1)



Table 2: User behavior features for ranking sections

Dwell
cumuDwellProb cumulative dwell probability, PeymupDweir(sq)
cumuDwellDocProb cumulative dwell probability given the document, Peymupwell(s|d, q)
cumuDwellDevi deviation from the average cumulative dwell time for the query, ocymubDwell (S, q)
avgDwell average dwell time, avgDwell(s, q)
avgDwellDevi deviation from the mean of average dwell time for the query, ogygpDweii (s, q)
relViewProb relevant view probability, Preiview(S|q)
relViewDocProb relevant view probability given the document, Py ejview(S|d, q)
relViewDevi deviation from the average relevant view frequency for the query, o eiview(s, Q)

Highlight

hiliteProb highlight probability, Ppijite(s]q)
hiliteDocProb highlight probability given the document, Pp;jite(s|d, q)
hiliteDevi deviation from the average highlight frequency for the query, op1ite (S, )

Copy
copyProb copy probability, Peopy(s|q)
copyDocProb copy probability given the document, Peopy(s|d, q)
copyDevi deviation from the average copy frequency for the query, ocopy (S, q)

Click
outlineClickProb outline click probability, P,ytiineciick (s|q)
outlineClickDocProb | outline click probability given the document, P,yt1ineciick(S|d, q)
outlineClickDevi deviation from the average outline click frequency for the query, ooutiineciick (S, q)
rolloverClickProb rollover click probability, Proijover(S|q)
rolloverClickDocProb | rollover click probability given the document, Projjover(S|d, q)
rolloverClickDevi deviation from the average rollover click frequency for the query, o,o110ver (S, @)
seelinkClickProb seelink click probability, Pseerink (S|q)
seelinkClickDocProb | seelink click probability given the document, Pseeiink(s|d, q)
seelinkClickDevi deviation from the average outline seelink frequency for the query, oscetink (S, q)
allClickProb click probability for all types of section clicks, Pajiciick(|q)
allClickDocProb click probability given the document for all types of section clicks, Pyiciick(s|d, q)
allClickDevi deviation from the average section click frequency, ouiiciick (S, @)

where i is the i*" section in R and rel; is the relevance grade
of section ¢. This measure is normalized with Zg so that
NDCG=1.0 when ranking is perfect. Precision is measured
as follows:
1 n
P@n = . ;::1 rel(s;) (2)
where rel(s;) is a binary relevance judgment for section s;.
Since our relevance judgments are graded, we set rel(s;) = 1
if the judgment label is > 3 and rel(s;) = 0 otherwise.
In the experimental results following in the next section

we typically evaluate NDCG and Mean Average Precision
at rank 100.

6.3 Results

In this section, our experimental results on the test set
are first compared using individual features that were de-
scribed in Section 5. Then, we use incremental feature sets
to analyze the gains.

6.3.1

Table 4 shows the results ranked in increasing order of
MAP. Deviation features are excluded here because they
are rank-equivalent to the corresponding probability features
(i.e., for instance ranking based on copyProb is the same as
ranking based on copyDevi) although they may have a dif-
ferent effect in learning to rank models. Feature luceneScore
at the top represents the raw section Lucene scores for sec-
tions. Not surprisingly, it also performs the poorest when
compared to all the other features with a MAP of 0.5941
and an NDCG of 0.7610. At the other end — the bottom of
Table 4 — we have the strongest features with a maximum
MAP of 0.8928 and NDCG of 0.9096, which are related to

Using Individual Features

clicks collected through an outline interface. Certainly, if
such an interface is set up, clicks yield the strongest signal
and should be employed. But if this is not the case, which
user search behavior features are the strongest? hiliteProb,
relViewProb, and copyProb are among the best scoring sin-
gle features. When comparing the amount of click actions
on sections in our training data set to copy and highlight
actions, it forms the majority among the three with about
54%. Highlighting is the next common action representing
about 40% of all actions. Copying a portion of text is rare —
only about 6% of the three. Given this, it is nice to see that
copyProb is among the strongest features, confirming that it
is a sparse but trustworthy feature. Highlighting a portion
of text is a noisier action since the user may be moving the
mouse and marking text as a reading aid.

6.3.2 Combining Feature Sets

As presented in Section 5, there are six types of feature
sets: (section) content, document, dwell time, high-
light, copy, and clicks. We start with the section Lucene
score from the content features and incrementally add in-
teresting feature sets. We divide the click feature set into
further subsets, outline, rollover, seelink, and all. Ab-
breviations for feature set names are shown in Table 5.

The results are presented in Table 6. While training, we
specifically optimize for NDCG. Statistical significance tests
are done with the paired t-test (p-value < 0.05) comparing
other feature sets to c+doc+dw+cop—+h+sl, which uses
(section) content, document and user search behavior fea-
tures without clicks depending on an outline (seelink clicks
are within documents pointing from one section to another).
Looking at the results we see that without any machine
learning the Lucene retrieved results perform poorest (sig-



Table 4: Some single features ranked in increasing
order of MAP.

Feature MAP | NDCG
luceneScore 0.5941 | 0.7610
cumuDwellDocProb 0.6426 | 0.7729
relViewDocProb 0.6528 | 0.7771
titleOverlap 0.6723 | 0.8005
seelinkClickDocProb | 0.6868 | 0.8006
level 0.6900 | 0.7822
seelinkClickProb 0.6971 | 0.8113
referenceProb 0.7089 | 0.8129
hiliteDocProb 0.7161 | 0.8014
position 0.7172 | 0.8335
allClickDocProb 0.7188 | 0.7964
avgDwell 0.7285 | 0.8045
copyDocProb 0.7330 | 0.8135
outlineClickDocProb | 0.7545 | 0.8117
rolloverClickDocProb | 0.7632 | 0.8146
docLucene 0.8111 | 0.8396
docClickProb 0.8180 | 0.8595
cumuDwellProb 0.8202 | 0.8641
copyProb 0.8230 | 0.8831
relViewProb 0.8272 | 0.8677
hiliteProb 0.8382 | 0.8846
rolloverClickProb 0.8729 | 0.8940
allClickProb 0.8902 | 0.9070
outlineClickProb 0.8928 | 0.9096

Table 5: Feature Set Abbreviations that are used
for the experiments.

Abbreviation | Feature Set

c content

doc document

dw dwell

cop copy

h highlight

sl seelink
outline

r rollover

nificantly worse) with a MAP of 0.5941 and an NDCG of
0.761. We get a huge 24% absolute gain for MAP using
section content features ¢ with RandomForests while the
gain for NDCG is 11%. Adding document features (c+doc)
yields another major boost for both models. Next, we add
user search behavior features. We found that when includ-
ing dwell time, highlight or copy individually to c+doc,
the differences are very small and insignificant. Therefore
the next combinations we analyze are c+doc+dw-+h and
ct+doc+dw+cop. While both yield similar gains across
the two models, c+doc+dw-+tcop performs a little better
according to the MAP results. There is no significant differ-
ence between the two and c4+doc+dw+cop+h+sl accord-
ing to RandomForests but with RankBoost c+doc+dw-+h
is significantly worse according to both measures - MAP and
NDCG. Next, we combine dwell, highlight, and copy with
the content and document features to yield c+doc+dw-+

cop-+h. The only feature set that separates it from c+doc+
dw+cop-+h-+sl are the seelink features. According to Ran-
domForests, this difference is insignificant, but with Rank-
Boost we get an absolute improvement of about 1%. Finally,

we compare this result to using clicks from the outline inter-
face (c+doc+o0). Outline and rollover clicks are among the
strongest single features according to Table 4 and it is not
surprising that we get a significant gain by using them. But
when comparing this to our purely user search behavior fea-
tures combination c+doc+dw-+cop+h-+sl, the difference
in the gain of about 1% is very small. This shows that when
an outline interface is not available, we can achieve a compa-
rable performance by using only user search behavior related
features. Using all features combined we get another small
boost for RandomForests while this slightly hurts NDCG for
RankBoost.

Table 6: Results with combined feature sets. Re-
sults marked with 1 (better) and | (worse) are statis-
tically significant over c+doc+dw+cop-+h+-sl within
the same model using the two-paired t-test (p-value

< 0.05).
Model Feature Set MAP NDCG
Lucene - 0.5941] | 0.7610]
RandomForests | ¢ 0.8317) | 0.87534
RandomForests | c+doc 0.9054] | 0.9282
RandomForests | c+doc+dw-+h 0.9196 0.9397
RandomForests | c+doc+dw—cop 0.9214 0.9352
RandomForests | c+doc+dw—+cop+h 0.9189 0.9389
RandomForests | c+doc+dw—+cop+h+sl | 0.9196 0.9389
RandomForests | c+doc+o 0.93067 | 0.95211
RandomForests | c+doc+o+r 0.93297 | 0.95011
RandomForests | all 0.93317 | 0.95091
RankBoost c 0.7176) | 0.8265]
RankBoost c+doc 0.8642 0.8917
RankBoost c+doc+dw+h 0.8661J | 0.8954)
RankBoost c+doc+dw+cop 0.8683 0.8958]
RankBoost c+doc+dw—+cop+h 0.8684) | 0.8988
RankBoost c+doc+dw-+cop+h—+sl | 0.8701 0.9001
RankBoost c+doc+o 0.88081 | 0.91051
RankBoost c+doc+o+r 0.88497 | 0.9084
RankBoost all 0.88557 | 0.90771

7. CONCLUSIONS

In this paper we explored the problem of improving sec-
tion ranking with four types of section level user behaviors:
section dwell time, section-level highlighting and copying of
text, and section level clicks (including see link, outline and
rollover click actions)

In our experiments exploring section ranking, we demon-
strated that if section-level clicks are available, they provide
a 3% gain in effectiveness over a highly tuned baseline of
Lucene scores blended with document-level click informa-
tion. However, recognizing that outline-style lists of section
headings may not always be appropriate, we showed that
non-intrusive logging of dwell time, text highlighting and
copying, and “see also” links can provide around half of that
gain. Of course, we note that these gains are not large, which
also support the conclusion that section-level logging is cur-
rently of little value: using document-level clicks and excel-
lent passage retrieval is almost as good as the approaches we
explored for incorporating section-level logging information
into ranking.

Our analysis revealed several interesting findings about
user behaviors at the section level. According to our data



set, 50% of section dwells are shorter than 2 seconds, sug-
gesting users skim many sections instead of reading them.
We discovered an adjacent bias for section dwell times: non-
relevant sections adjacent to relevant sections tend to get
more dwell time than non-relevant sections that are further
away, because when users read a relevant section, adjacent
sections are also being displayed. For highlighting and copy-
ing, we find strong correlations between highlight frequencies
and copying frequencies with a Pearson’s correlation coeffi-
cient of 0.79. For clicks, we find that users tend not to click
sections in the top part of the pages from the outline because
they are already being displayed, which results in a position
bias for section clicks.
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