
Filtered Dynamic Indexing of Text Streams

Samuel Huston
Center for Intelligent
Information Retrieval

University of Massachusetts
Amherst

140 Governors Drive
Amherst, MA, 01002

sjh@cs.umass.edu

W. Bruce Croft
Center for Intelligent
Information Retrieval

University of Massachusetts
Amherst

140 Governors Drive
Amherst, MA, 01002

croft@cs.umass.edu

Andrew McGregor
Department of Computer

Science
University of Massachusetts

Amherst
140 Governors Drive
Amherst, MA, 01002

mcgregor@cs.umass.edu

ABSTRACT

The identification and indexing of textual features that occur fre-
quently in text streams is vital for many real-world information
retrieval applications. Previous research has shown that frequent
indexes of text features can be constructed efficiently for static col-
lections. We extend this research to allow the insertion of new doc-
uments to the index. The insertion of new documents introduces a
problem for these static methods, in that newly-frequent n-grams
cannot be distinguished from infrequent n-grams. In this paper we
propose and test a novel system for the construction and mainte-
nance of dynamic indexes for frequent text features in text streams.
Our system is designed for implementation within a parallel com-
puting environment. We investigate the CountMin sketch and pro-
pose a new LinearCountMin sketch for the purpose of tracking the
entire text feature vocabulary. We demonstrate that these data struc-
tures allow us to efficiently maintain a dynamic index of frequent
text features. Furthermore, we show that this system is able to pro-
cess very high volume text streams using only modest resources.

Categories and Subject Descriptors

H.3.4 [Information Storage and Retrieval]: Systems and soft-
ware—performance evaluation.; H.3.1 [Content Analysis and In-

dexing]: Indexing methods; H.3.3 [Information Search and Re-

trieval]: Information filtering

General Terms

Algorithms, experimentation, performance

Keywords

Repeated phrase, n-gram, hash filter, text reuse, scalability, dy-
namic, online

1. INTRODUCTION
The identification and indexing of features that occur frequently

in text streams is vital for many real-world information retrieval

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

applications. A prime example is the discovery and tracking of
trending topics in Twitter feeds. However, this task can also be mo-
tivated in the context of personal data search, breaking news search,
and general web search. Previous research has shown that, in these
applications, frequent n-grams, phrases, and key concepts are im-
portant features for computing document scores (e.g., [18, 2, 9]).
All of these features share the common property of having a very
large possible total vocabulary size with a significant proportion of
the vocabulary occurring very few times. In this paper, we look at
the problem of identifying and indexing frequent text features in
a stream of documents. In these streams, new data is constantly
being added, and the newly arrived documents, along with the text
feature statistics, must be made available for retrieval as soon as
possible.

Huston et al. [14] provides an in-depth analysis of several meth-
ods of indexing frequent n-grams within a static collection, where
“frequent” n-grams are defined as those occurring within the col-
lection more often than a threshold frequency. By focusing on this
subset of the vocabulary, the final indexes are significantly smaller
in size and faster to search than a full n-gram index. They con-
clude that a two-pass method using a hash-based filter provides an
efficient balance between space and time usage when constructing
a frequent n-gram index.

However, this two-pass method is limited to a static setting for
two key reasons. First, it needs to process the data twice. Data
streams constantly provide new data, so the stream cannot be read
multiple times. Second, if we allow the insertion of new documents
into this type of index, it is inevitable that some n-grams will be
promoted from infrequent to frequent. These n-grams should then
be inserted into the index. The methods considered in [14] discard
all information about these infrequent n-grams, so it is impossible
to determine when an n-gram becomes frequent. To use these algo-
rithms, the entire collection would need to be re-indexed for each
new batch of data.

The obvious solution is to use a dynamic index. Data structures
and algorithms for dynamic indexes have been extensively studied
in information retrieval. Lester et al. [16] compare several baseline
approaches to the geometric indexing approach. This technique
allows the insertion and removal of documents from an index or
a set of indexes efficiently, while still providing efficient retrieval
throughout. Unfortunately, using this technique for the task of in-
dexing frequent text features is not feasible. This is because it is
impossible to directly determine which text features may be dis-
carded as they will never occur frequently. Without the ability to
estimate frequency, the system must maintain an index over the
entire vocabulary to provide 100% recall over the frequent text fea-
tures. As we will show, the space requirement for a full text feature
index is infeasible, even for modest sized collections.

We define a text feature as a series of two or more words ex-
tracted from a document. Phrases, key concepts, n-grams, and un-
ordered windows are all examples of text features. In this paper, we
focus on n-gram text features. n-Grams are often used as proxies
for more complex text features [2]. Additionally, they provide us
with explicit control over the size of the text features.

As mentioned, Huston et al. [14] defined a frequent text feature
to be an n-gram that occurs at least h times. We further restrict
this definition to a text feature that occurs at least h times within a
preceeding time window of length w, where the time window is a
stepping window of fixed length over the input text stream S. Note
that the size of the time window will influence the total number
of frequent features within a given collection. The use of this win-
dow focuses the system on common and trending text features. The
size of the time window should be determined for each application.
When indexing Twitter feeds or breaking news data, an appropriate
time window could be between one day and several hours of data.
When indexing web data, an appropriate window size could be sev-
eral days or weeks. For this paper, we will measure the length of a
time window by the number of text features the time window spans.

In order to distinguish between frequent and infrequent text fea-
tures, a filter data structure that tracks the frequency of the entire
vocabulary is required. We can make some specific requirements
for this structure. The space used by the structure should be inde-
pendent of the size of the textual features. For example, a structure
that tracks 10-grams should be the same size as a structure that
tracks 5-grams. The data structure should never underestimate the
frequency of text features. This requirement ensures that all fre-
quent text features will be identified and indexed. The size of the
data structure should scale linearly as the size of the time window
is increased. Finally, the data structure should be able to be effec-
tively distributed across a parallel computing platform.

Naïvely, this filter data structure could consist of a mapping from
each textual feature to a current frequency count. In order to satisfy
speed and throughput requirements, this structure should be held in
memory.

To demonstrate that this simple structure will not scale, we will
look at an example based on our calculations of n-gram statistics
(see Section 2.) Let the time window in our example span a window
of 1 GB of English text. Ignoring mark-up, a reasonable estimate
would be that this window contains around 100 million words, and
a vocabulary of around 1 million distinct words. If each word and
each count is represented as a 3 byte integer, when indexing these
words, the data structure requires 6 bytes per entry. Including the
pointers required for a dynamic search structure, 1 million entries
would require around 10 MB. Now consider 5-grams. Again us-
ing 3 byte integers for words and counts, the data structure now
requires 18 bytes per entry. It is plausible that almost all 5-grams
in this window are unique, thus the data structure needs to store one
entry for each 5-gram in the window. Accounting for the pointers
required for a dynamic search structure, 100 million entries would
require around 2.5 GB to store. While this may be a feasible re-
quirement for current commodity machines, when n = 10 and the
window is a terabyte of text, the requirement quickly becomes in-
feasible even for high-end machines.

In this paper we present the CountMin Sketch [8] and introduce
the novel LinearCountMin Sketch as viable filter data structures
for this task. The CountMin Sketch was originally developed by
the stream processing community in order to track frequent items
in network traffic data.

The system we propose does not index all text features. It fo-
cuses on indexing currently frequent or trending textual features.
This enables larger systems efficient access to statistics for impor-

WSJ GOV2 ClueWeb-B

Collection Length, N 7.8 · 107 2.2 · 1010 3.2 · 1010

1-grams, |V1| 2.4 · 105 3.9 · 107 8.9 · 107

2-grams, |V2| 9.3 · 106 5.3 · 108 1.3 · 109

3-grams, |V3| 3.4 · 107 2.4 · 109 5.5 · 109

4-grams, |V4| 5.6 · 107 4.9 · 109 1.1 · 1010

5-grams, |V5| 6.7 · 107 6.7 · 109 1.5 · 1010

6-grams, |V6| 7.1 · 107 7.8 · 109 1.7 · 1010

Table 1: Collection length and n-gram vocabulary sizes for three
English collections. Measured as the number of word tokens.

tant text features. We believe that collecting this data is sufficient
for many practical purposes. However, if there is a need for a full

text feature index, it is possible to use frequent text feature indexes
to improve the efficiency of information retrieval over the entire
set of textual features. A full positional term index can be used
to re-construct the infrequent text features omitted from a frequent
text feature index. Thus combination of indexes avoids the high
processing costs involved in merging large amounts of positional
data for frequent text features and ensures access to the entire text
feature vocabulary.

In this paper, we investigate the vocabularies of n-grams and
frequent n-grams in Section 2. In Section 3, we present and ana-
lyze the CountMin sketch [8] and the novel LinearCountMin sketch
as candidates for the filter data structure. We then show that both
structures satisfy all of the requirements we placed on this structure.
In Section 4, we propose a system design for the dynamic index-
ing of frequent text features that can be distributed within a parallel
computing environment. We present the details of a parallel im-
plementation in Section 5. We empirically test the performance of
several aspects of a dynamic filtered indexing system in Sections 6
and 7. We present related work in Section 8 and make concluding
remarks in Section 9.

2. VOCABULARY SIZES
We begin by investigating the statistics of the text streams that

we are indexing, and in particular understanding the size of the vo-
cabulary that may need to be monitored by the filter data structure.
It is also important to investigate the effect of the relationship be-
tween the threshold value and the window size on the frequent text
feature vocabulary. These statistics show us the amount of data we
are discarding in the selection of a threshold or a window size. As
discussed earlier, we only investigate n-gram text features through-
out this paper.

The statistics shown in this section were extracted from 3 English
TREC collections of increasing sizes – Wall Street Journal (WSJ)
(~0.6 GB), GOV2 (~426 GB) and ClueWeb Category B (Clueweb-
B) (~1.2 TB). The order of documents is an important consider-
ation for each of these collections. The document order interacts
with the time window size to influence the vocabulary size of fre-
quent textual features. Each of these collections is ordered in a
different manner; WSJ is in date order, GOV2 is in random order,
and Clueweb-B is in crawl order. Wikipedia documents are omit-
ted from the Clueweb collection, as they could not be placed in the
correct ordering.

Table 1 shows the collection length and total vocabulary sizes
for 1 to 6 grams for each of these collections. Observe that for rela-
tively small values of n, the vocabulary size is a significant fraction
of the collection. As discussed in the introduction, it is the massive
size of the vocabulary of text features that makes constructing a full

0e+00 2e+07 4e+07 6e+07 8e+07

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Position in Stream (N)

F
ra

c
ti
o
n
 o

f
to

ta
l
n
−

g
ra

m
 v

o
c
a
b
u
la

ry 1−gram

2−gram

3−gram

4−gram

5−gram

6−gram

(a) TREC WSJ Data, N ≈ 7.8 · 107

0.0e+00 5.0e+09 1.0e+10 1.5e+10 2.0e+10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Position in Stream (N)

F
ra

c
ti
o
n
 o

f
to

ta
l
n
−

g
ra

m
 v

o
c
a
b
u
la

ry 1−gram

2−gram

3−gram

4−gram

5−gram

6−gram

(c) TREC GOV2 Data, N ≈ 2.2 · 1010

0.0e+00 1.0e+10 2.0e+10 3.0e+10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Position in Stream (N)

F
ra

c
ti
o
n
 o

f
to

ta
l
n
−

g
ra

m
 v

o
c
a
b
u
la

ry 1−gram

2−gram

3−gram

4−gram

5−gram

6−gram

(d) TREC ClueWeb-B Data, N ≈ 3.2 · 1010

Figure 1: Normalized vocabulary growth rate for various English
language text collections. Data points are normalized by the corre-
sponding final n-gram vocabulary.

index of text features infeasible.
In a dynamic setting we are also interested in the growth rates

of the text feature vocabularies. Figure 1 shows the vocabulary
growth rates for 1 to 6 grams. The data in this graph is normalized
by the total vocabulary size; a diagonal line from the bottom left to
the top right would indicate that the vocabulary grows at a constant
rate. Sharp rises in these graphs indicate a sudden influx of new
n-grams, while horizontal plateaus indicate that few, if any, new n-
grams are arriving. Each of these graphs show that the vocabulary

1e+06 1e+07 1e+08 1e+09 1e+10

1
e
−

0
1

1
e
+

0
3

1
e
+

0
7

Position in Stream (N)

V
o
c
a
b
u
la

ry
 S

iz
e
 (

|V
|)

h=1

h=2

h=4

h=8

h=16

h=32

h=64

h=128

h=256

(a) TREC Clueweb-B Data, n = 1, N ≈ 3.2 · 1010

1e+06 1e+07 1e+08 1e+09 1e+10

1
e
−

0
1

1
e
+

0
2

1
e
+

0
5

1
e
+

0
8

Position in Stream (N)

V
o
c
a
b
u
la

ry
 S

iz
e
 (

|V
|)

h=1

h=2

h=4

h=8

h=16

h=32

h=64

h=128

h=256

(b) TREC Clueweb-B Data, n = 5, N ≈ 3.2 · 1010

Figure 2: Threshold vocabulary growth rates for Clueweb for 1
and 5-grams. Graphs for the other two collections were produced,
these show similar trends.

of n-grams grows continuously at a slowly decaying rate. Thus, the
filter data structure must be able to cope with a constantly changing
vocabulary as the time window steps accross the data.

Figure 2 shows the growth rates for frequent n-gram vocabular-
ies given a range of threshold values. We show graphs for data
extracted from Clueweb-B, and have produced graphs for the other
collections and verified that they show similar trends. Note that
both axes for this graph are logarithmic. The anomalous data at the
lower left side of the graph is produced by the scarcity of 5-grams
that occur more than 32 times. As the amount of data in consid-
eration grows, the growth rate of these vocabularies stabilizes. We
can see from these graphs that the threshold and the frequent vo-
cabulary sizes are linked in an interesting way. As the threshold
is increased exponentially (using a factor of 2), the size of the fre-
quent vocabulary decreases logarithmically (using base 10). It is
unclear if this observation holds for English generally, or if it is a
feature of these three collections.

We now investigate the effect of the choice of time window size.
Figure 3 shows the distribution of normalized minimal window
sizes for a range of values of n and h for the WSJ collection. The
WSJ collection is used for this experiment, as it is the only col-
lection that can be sorted into temporal order. A minimal window
size is defined as the smallest window size that would allow each
n-gram in the data stream to be be defined as frequent. We normal-
ize the size of the minimal windows using the size of the observed

2 4 8 16 32 64 128 256

0
.0

0
0
.0

4
0
.0

8
0
.1

2

Frequency Threshold (h)

N
M

W
L
 (

w
in

d
o
w

 s
iz

e
 /
 s

tr
e
a
m

 l
e
n
g
th

)

(a) TREC WSJ Data, n = 1, N ≈ 7.8 · 107

2 4 8 16 32 64 128 256

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Frequency Threshold (h)

N
M

W
L
 (

w
in

d
o
w

 s
iz

e
 /
 s

tr
e
a
m

 l
e
n
g
th

)

(b) TREC WSJ Data, n = 2, N ≈ 7.8 · 107

2 4 8 16 32 64 128 256

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Frequency Threshold (h)

N
M

W
L
 (

w
in

d
o
w

 s
iz

e
 /
 s

tr
e
a
m

 l
e
n
g
th

)

(c) TREC WSJ Data, n = 5, N ≈ 7.8 · 107

Figure 3: Box and whisker plots for window lengths for a variety of
values of n and h. NMWL stands for Normalized Minimal Window
Length. This value is the smallest possible fraction of the stream
that would allow a particular feature to be identified as frequent.

stream. This adjusts for a possible sampling bias produced by mea-
suring this data from collections of finite size. This graph shows
how the window size affects the vocabulary size of a frequent in-
dex. Using this data we can estimate the number of potentially
frequent features that we will not be indexed due to the selection of
the window size. For example, if we set the window size to 0.2 of
the length of the WSJ collection and the threshold to 32, we will
index around 75% of potentially frequent 2-grams.

3. FILTER DATA STRUCTURES
We outlined a series of requirements that a filter structure must

meet in the introduction. We will address some of these require-
ments in this section. First, text features, such as phrases, key con-
cepts or n-grams, can be arbitrarily large and we require that the
size of the filter structure does not depend on the size of the text
feature. Second, it is possible that the vocabulary of text features is
as large as the time window, so the data structure must be able to
track a vocabulary that is the size of the time window. Given these
requirements, hash function-based data structures are an appropri-
ate choice for tracking the vocabularies of textual features.

We have chosen to base our filter data structures on the Count-
Min Sketch described by Cormode and Muthukrishnan [8]. The au-
thors define a ‘Sketch’ to be a compact summary of a large amount
of data. This structure was originally developed as a solution to
the ‘heavy hitter’ problem for network traffic data. In our case we
require the CountMin Sketch to summarize the frequencies of text
features. This data structure provides an excellent method of con-
trolling the trade-off between space requirements and probabilistic
error guarantees. As we will show, it also provides better perfor-
mance than a simple hash indexed array of count values.

3.1 CountMin Sketch
The CountMin Sketch [8] consists of a two dimensional table of

counters and a set of methods for updating and estimating count
values. Each row in the table is a hash-indexed array of counters.
Each row must use a different hash function. When a new feature
instance is added to the structure, one cell in each row is incre-
mented. To estimate the frequency of a feature, the frequency es-
timates from each row are extracted and the minimum is returned.
We will now describe the guarantees provided by this structure.

The width and depth of the structure are defined using two pa-
rameters, (ǫ, δ). The parameter ǫ is the expected error as a fraction
of the time window w, and the parameter δ controls the probabil-
ity of observing error greater than the expected error. The width
of the hash table is defined as v = ⌈ e

ǫ
⌉ and depth d = ⌈ln 1

δ
⌉. d

hash functions that are chosen uniformly at random from a family
of pairwise independent hash functions.

When some feature i is to be added or removed from the sketch,
one count in each row of the CountMin sketch is updated as deter-
mined by the corresponding hash function. Formally:

∀j<d : count[j, hj(i)] = count[j, hj(i)] + 1

∀j<d : count[j, hj(i)] = count[j, hj(i)]− 1

The frequency of some feature, i, can be estimated by returning the
minimum count in the set.

âi = min
j

count[j, hj(xi)]

Conservative update, originally presented by Estan and Vargh-
ese [12], is a heuristic method that is often used to improve the
frequency estimates produced by the CountMin sketch by avoiding
some collisions. It operates by only updating the minimum set of
rows in the CountMin sketch. The update function for each row j
for the event i is:

count[j, hj(i)] = max(count[j, hj(i)],min
k<d

(count[k, hk(i)]+1))

Unfortunately this technique can only be applied where sketch up-
dates are only positive. When attempting to remove feature i from
the time window, the method cannot determine which rows should
be decremented and which should not. We will not consider this
heuristic in our experiments.

Cormode and Muthukrishnan [8] has shown that this structure
provides several guarantees about the estimated frequencies. First,
the estimate âi is always an over-estimate of the true frequency;
ai ≤ âi. This guarantee means that no frequent text feature will
falsely identified as infrequent. Second, with probability 1 − δ,
âi ≤ ai + ǫ‖w‖. This guarantee provides a probabilistic limit on
the number of infrequent features that we falsely identify as fre-
quent.

3.2 LinearCountMin Sketch
We now present the LinearCountMin Sketch. This is a new data

structure similar to the CountMin Sketch. The underlying data
structure is changed from a table to a one dimensional array of
counts of width v · d. Where v and d are selected in the same man-
ner as in the CountMin Sketch. Each of the d hash functions should
be selected from a family of fully independent hash functions. Each
of these hash functions are now used to update this array of coun-
ters. We present this structure as it provides simple, distributable
implicit and explicit implementations.

We now introduce a new collision reduction heuristic. It is pos-
sible that two of the hash functions we defined collide for some
particular feature i. We revise the update procedure to only update
each cell only once. Let count′[hj(i)] be the value of the count
cell prior to the update.

∀j<d : count[j, hj(i)] = count′[j, hj(i)] + 1

If we assume all hash functions are independent, we can now
show that this data structure has error guarantees that are identical
to the original CountMin Sketch. For the purposes of this proof,
we view the stream of features for a particular time window as a
sequence of updates, w. Where each update i ∈ w is an element
of the vocabulary of the current time window. Each update i ∈ w
has a corresponding a frequency ai. The pairwise nature of the
additions and removals for the structure allows us to guarantee that
all count cells are positive.

Theorem 2: The estimate âi has the following guarantees from

the LinearCountMin sketch: ai ≤ âi, and with probability at least

1 − δ, âi ≤ ai + ǫ · ‖w‖, where w is a set of features inserted in

the sketch and ai is the true count of feature i.

PROOF. Let counti be a duplicate array of counters, except that
this array was not updated with the data from feature i. This array
can be interpreted as an array of possible collision values for the
feature i.

Let Ii,k be an indicator variable for the expression counti[k] >
ǫ · ‖w‖. This variable indicates if a particular cell k, is overfilled
with respect to the expected error for i. We can estimate an upper
bound on the total number of cells with this property as the total
amount of data in the counter array divided by the minimum value
that allows the property to hold.

∑

k

Ii,k ≤
d · ‖w‖

ǫ · ‖w‖
=

d

ǫ

Given that a hash function j will uniformly at random select a
counter cell for the feature i, we can compute an upper bound on
probability that the selected cell has the property I . We compute
this upper bound as the maximum number of cells with the property
I divided by the total number of cells.

Pr[Ii,hj(i)] ≤
d

ǫ
÷

d · e

ǫ
=

1

e

Given that all hash functions are fully independent, we can compute
an upper bound on the probability that all hash functions select cells

10^5 10^6

−
0

.0
2

−
0

.0
1

0
.0

0
0

.0
1

0
.0

2

Window Size (# features)

D
if
fe

re
n

c
e

 i
n

 P
re

c
is

io
n

 (
P

(l
in

)
−

 P
(c

m
))

Figure 4: Comparison of CountMin and LinearCountMin Sketch
data structures. Shown is the difference in precision for a range of
parameters. n ∈ {1, 3, 5}, h ∈ {4, 16, 64}, ǫ ∈ {(0.3·h/w), (0.5·
h/w), (0.9 · h/w)}, δ ∈ {1/e2, 1/e4, 1/e6}. All permutations of
these parameters were tested. Data used for this experiment are
subsets of Clueweb-B.

with this property.

Pr[∀j Ii,j] =
∏

j

Pr[Ii,hj(i)]

≤
∏

j

1

e

= δ

Now we can show the final part of the proof:

Pr[âi > ai + ǫ‖w‖] = Pr[∀j count[hj(i)] > ai + ǫ‖w‖]

= Pr[∀j ai + counti[hj(i)] > ai + ǫ‖w‖]

= Pr[∀j counti[hj(i)] > ǫ‖w‖]

= Pr[∀j Ii,hj(i)]

≤ δ

3.3 Experiments
In this section we analyze the performance of the CountMin

and LinearCountMin sketch for the task of identifying frequent n-
grams extracted from sequences of English text. Each of these ex-
periments measures the precision of the identification of frequent
n-grams. Precision is calculated as the true number of frequent n-
grams divided by the number of n-grams identified by the structure
as frequent. This is an appropriate measure of performance as we
are guaranteed that neither of these structures will omit any fre-
quent n-grams. We are guaranteed that âi ≥ ai for both of these
structures.

First, we investigate the difference between the performance of
the CountMin and LinearCountMin structures. Figure 4 shows the
distribution of differences in precision between the two data struc-
tures for our task. Data points shown in the graph have been pro-
duced using a range of possible parameter values. This graph shows
that the two methods produce very similar performance, with the
mean difference between the performances very close to 0. The ac-
tual differences in the mean values for each window size was calcu-
lated to be 0.0005 for a window of size 105 features and −0.0003
for the windows of size 106 features. Both of these observed dif-
ferences was found to be statistically significant using the paired-t-
test, (p < 0.05). These results show that the measured precision,
with respect to this application, of each of these structures is ap-
proximately equal.

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Expected Error / Depth

P
re

c
is

io
n
 (

T
P

 /
 (

F
P

 +
 T

P
))

2.5 / 1 5 / 2 7.5 / 3 10 / 4 12.5 / 5 15 / 6

n= 1 h= 16

n= 1 h= 32

n= 1 h= 64

n= 3 h= 16

n= 3 h= 32

n= 3 h= 64

n= 5 h= 16

n= 5 h= 32

n= 5 h= 64

(a) Subset of TREC ClueWeb-B Data, S ≈ 1 · 105

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Expected Error / Depth

P
re

c
is

io
n
 (

T
P

 /
 (

F
P

 +
 T

P
))

2.5 / 1 5 / 2 7.5 / 3 10 / 4 12.5 / 5 15 / 6

n= 1 h= 16

n= 1 h= 32

n= 1 h= 64

n= 3 h= 16

n= 3 h= 32

n= 3 h= 64

n= 5 h= 16

n= 5 h= 32

n= 5 h= 64

(b) Subset of TREC ClueWeb-B Data, S ≈ 1 · 106

Figure 5: Graphs show the trade off between width and depth in
LinearCountMin Sketches. The total number of cells in the data
structure is constant for all data points in each graph. Expected
Error is computed as ǫ · w. Each data point is averaged over 5
repeated trials.

Next, we find the optimal balance between ǫ and δ in the context
of tracking the frequency of text features. We test this by using
a static number of counters and adjust the ratio between the width
and the depth of the CountMin and LinearCountMin structures. We
measure the precision of the LinearCountMin sketch for the identi-
fication of frequent n-grams, for a range of n, h, and w. Figure 5
shows that the optimal ratio between δ and ǫ for this data set occurs
where the depth is 2.

We choose to use the LinearCountMin Sketch in our system be-
cause it is it provides identical precision for this task as the Count-
Min Sketch, and it provides a more efficient distributed implemen-
tation for a cluster computing platform.

4. SYSTEM DESIGN
We now detail the system design that we will be investigating.

Using this system, we can analyze the performance of a filter data
structure for our task. This system is designed to naturally provide
a scalable implementation within a distributed computing environ-
ment. Our system is composed of four components; parser, filter
shard handler, location count accumulator, and indexer.

The first component reads data from the document stream. Each
document is parsed and tokenized. The tokenized document is

Figure 6: Filtered dynamic index system design. Each part may
be distributed across a shared-nothing parallel computing environ-
ment.

copied to a persistent storage location. Textual features are then
extracted from the tokenized document and d hash values are com-
puted using the hash functions associated with the filter data struc-
ture. Each of the hash values and the location of the text feature are
sent to the filter shard handler component. By sending only hash
values and locations, the size of the communication between the
parser and the filter shard handler does not depend on the size of
the text feature.

The second component maintains the filter data structure. For
each received hash value and location, the filter data structure is
updated. The updated frequency estimate for each hash value is ex-
tracted and sent to the frequency estimator component. This com-
ponent also maintains the time window. It does this using a circular
buffer. As hash values are added to the buffer, the oldest hash val-
ues are removed and the filter data structure is updated.

The third component classifies locations as frequent or infre-
quent. It collects d counts for each location. Once all counts have
been collected, the minimum count in this set is checked against
the threshold. Frequent locations are passed on to the indexer com-
ponent. In a single threaded environment this component can be
implemented as part of the previous component. In this case no
additional memory is required.

When the indexer receives confirmation that a location is fre-
quent, the textual feature is extracted from the stored document data
and added to the dynamic index structure. The details of this index
structure are beyond the scope of this paper. We use the geometric
indexing approach presented by Lester et al. [15].

5. PARALLEL SYSTEM DESIGN
We make the claim that this system design can be distributed

within a parallel computing environment in an efficient and scalable
manner. An overview of this system is shown in Figure 6. There
are two key considerations for a parallel implementation. First, we
need to distribute the work load evenly across the nodes for each
component. Second, we need to ensure that the inter-component
communication does not become a system bottleneck.

We will first consider how to distribute data to each component.
The aim is to ensure that each instance of each component will
process approximately the same amount of data. The parser is dis-
tributed by assigning documents from the document stream to in-
stances using a round robin algorithm. This will ensure each node

0.0e+00 5.0e+09 1.0e+10 1.5e+10

0
1

2
3

4

w

R
A

M
 (

G
B

)

d=2 exp.err=20

d=2 exp.err=40

d=2 exp.err=60

d=2 exp.err=80

Figure 7: Implicit filter RAM requirements as a function of time
window size for a range of structure depths and expected error
rates. We chose to show the expected error rate instead of ǫ,
ǫ = exp.err/w.

will process roughly the same amount of data.
The filter shard handler component is distributed by hash value

ranges. Each node maintains a fraction of the CountMin sketch
corresponding to a range of hash values. This method distributes
the space requirements of this part equally across all instances of
the component. However, a side effect of this decision is that the
distribution of input data may be skewed.

Previous research has observed that the distribution of English
text using terms as hash keys will produce a skewed work load, see
Moffat et al. [19]. However, in this system we are using extracted
text features as hash keys. As shown in Section 2, extracted text
features tend to have much a larger vocabulary than terms. The
larger vocabulary drastically reduces the imbalance in the work
load distribution. We empirically test this claim in Section 7.2.

The location count accumulator is distributed using locations as
hash keys. Locations contain both the source document identifier
and the offset information for the text feature. Unlike the previous
stage, there is no skew in amount of data associated with each lo-
cation; there are d counts associated with each location. Assuming
an appropriate hash function is used to distribute locations it is fair
to expect an equal load distribution.

Finally, the instances of the indexer component are distributed
by randomly assigning document identifiers. Previous research in-
dicates that this method of data distribution leads to an approxi-
mately equal distribution of retrieval load, see Moffat et al. [19].

Inter-component communication can be a bottleneck in parallel
systems. We have made several design decisions to avoid this prob-
lem. First text features themselves will never be communicated be-
tween components. Thus we can ensure that the communication
is not dependent on the size of the text feature. Second, the inter-
component communication using these distribution schemes will
be non-duplicated and non-redundant. Finally, all communication
may be buffered and processed asynchronously in batches. This
measure reduces the network packet overhead costs.

6. SYSTEM IMPLEMENTATION
We consider two implementations of the LinearCountMin Sketch,

through implicit and explicit representations of the structure. An
explicit representation must store the structure directly. An im-
plicit representation consists of a sorted set of hash values and their
associated non-zero count values. There are some significant dif-

ferences in space usage and processing throughput between these
two representations.

Updating the explicit structure depends on the number of hash
functions being used by the Sketch, it requires O(d) time. Batch
processing sets of features will not improve throughput.

The RAM requirements for the explicit filter structure can be de-
termined specifically. The width of the CountMin sketch is defined
to be e

ǫ
, where ǫ < h

w
. It is clear that RAM usage is linearly related

to the size of time window. Some actual RAM requirements are
shown in Figure 7. Note that the largest window size considered in
this graph is approximately the same size as the GOV2 collection.

The implicit LinearCountMin Sketch consists of a sorted set of
hash values. This structure performs best using batch updates. Each
batch update requires a linear pass over the set of hash values, this
requires O(d · |w|) time. This cost is amortized over the size of
the batch. The key advantage of an implicit structure is that it can
be stored on disk instead of memory and still maintain reasonable
throughput. This allows the use of large hash tables and therefore
permits the system to use very large window sizes with low thresh-
old values.

Unfortunately, batch processing adds a delay between the obser-
vation of a frequent feature and indexing. For some applications,
this delay could be a problem. For example, Twitter data should
not be buffered longer than a few minutes. For this type of data we
would expect the buffer size to be a very small fraction of the time
window. We will investigate how this ratio affects throughput in
the next section.

7. SYSTEM TESTING

7.1 Single CPU Implementation
We will now perform experiments on the processing speed of

both the implicit and explicit versions of the LinearCountMin struc-
ture for various sized time windows, n-grams, and thresholds. Fig-
ure 8 shows the results from these experiments. All noticeable dif-
ferences between the mean values displayed in these graphs are
significantly different using the two sample t-test.

In each of the graphs in Figure 8, we investigate how parame-
ters of our system influence the throughput. For each of these ex-
periments we test all permutations of a range of parameter values:
n ∈ {1, 3, 5}, h ∈ {4, 16, 64}, ǫ ∈ {(0.3·h/w), (0.5·h/w), (0.9·
h/w)}, δ ∈ {1/e2, 1/e3, 1/e4}. For each set of parameters, we
compute the average time to perform 106 filter updates, where a
filter update consists of one inserted and one removed feature in-
stance. We replicate these experiment 2, 000 times. In all of these
experiments the implicit filter structure is stored in memory instead
of on disk.

Figure 8 (a) shows the impact of window size on the through-
put of each system. We can see that the implicit filter system is
not dramatically affected by the size of the time window. How-
ever, the explicit filter system shows a slow increase in the average
processing time of a text feature as the time window grows. The
ratio between the buffer size and the time window was held static
at 1/10 for all of these experiments. This is an important result, it
shows that both systems will scale to large time windows relatively
effectively.

Figure 8 (b) investigates the effect of the buffer size on the through-
put of the implicit system. This figure shows how throughput is
affected by as the ratio between the buffer and the time window
changes. We observe a clear correlation between the buffer ratio
and the throughput. This graph shows that an implicit filter im-
plementation is not suitable for high volume text streams, with a
frequent update schedule.

0
.0

0
4

0
.0

0
6

0
.0

0
8

Window size (# features)

A
ve

ra
g

e
 t

im
e

 /
 f
e

a
tu

re
 (

m
s
)

10^6 5*10^6 10^7

Explicit LCM

Implicit LCM

(a) Subsets of Clueweb-B, w ∈ {106, 5 · 106, 107}

0
.0

1
0

.0
3

0
.0

5
0

.0
7

Log Scale, Buffer Size / Window Size (b / w)

A
ve

ra
g
e

 t
im

e
 /
 f
e

a
tu

re
 (

m
s
)

1:10 1:20 1:100 1:200 1:1000

Explicit LCM

Implicit LCM

(b) Subsets of Clueweb-B, w = 107

0
.0

0
2

0
.0

0
6

0
.0

1
0

n

A
ve

ra
g
e

 t
im

e
 /

 f
e

a
tu

re
 (

m
s
)

1 3 5

Explicit LCM

Implicit LCM

(c) Subsets of Clueweb-B, w ∈ {106, 5 · 106, 107}

0
.0

0
4

0
.0

0
6

0
.0

0
8

Threshold (h)

A
ve

ra
g
e

 t
im

e
 /
 f
e

a
tu

re
 (

m
s
)

4 16 64

Explicit LCM

Implicit LCM

(d) Subsets of Clueweb-B, w ∈ {106, 5 · 106, 107}

Subsets of TREC ClueWeb-B Data

Figure 8: Comparison of implicit and explicit LinearCountMin sketch implementations for different window sizes. Shown is the 1st quartile,
mean, and 3rd quartile of the measured times to update a LinearCountMin sketch. Parameter settings used to generate data: n ∈ {1, 3, 5},
h ∈ {4, 16, 64}, ǫ ∈ {(0.3 · h/w), (0.5 · h/w), (0.9 · h/w)}, δ ∈ {1/e2, 1/e3, 1/e4}. In all plots except (a), the buffer size for the implicit
data structure is 10% of the size of the time window w.

Figure 8 (c) investigates the effect of the size of the vocabulary
on the throughput of each system. Recall that the vocabulary size
can be controlled using the size of n-grams. We infer from this data
that the throughput of each implementation drops as the vocabulary
size increases.

Finally, Figure 8 (d) investigates the effect of the threshold pa-
rameter on throughput. We can see that this parameter does not
dramatically alter the throughput of the implicit system. As the
threshold is increased, the throughput of the explicit system in-
creases. This is likely to be caused by the impact of this parameter
on the width of the data structure. Note that we have set ǫ as a
fraction of the threshold value in each of these experiments.

7.2 Parallel Implementation
As discussed previously load balancing is a critical factor in any

distributed system. We perform two experiments to test the load
balance and scalibility of a parallel implementation of our system.

First, we investigate the load imbalance produced by the distri-
bution of hash values in the filter shard handler component. We
measure the imbalance of a component instance to be the ratio be-
tween the observed number of has values and the expected number
of hash values. The imbalance present in the system is measured

1 2 3 4 5 6 7

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

n

Im
b

a
la

n
c
e

 (
s
td

d
e
v
 o

f
o

b
s
e

rv
e

d
 l
o

a
d

)

nodes = 32
nodes = 16
nodes = 8
nodes = 4
nodes = 2

Figure 9: Load imbalance in parallel implementation. Data used
for this experiment consists of subsets of Clueweb-B. All runs used
window size: w = 106.

as the standard deviation of the imbalance in each node. For this
experiment we use a window of size 106, threshold h = 16, depth

5
0

0
1

0
0

0
1

5
0

0

1,000s of documents / nodes

P
ro

c
e

s
s
in

g
 T

im
e

 (
s
)

65 / 4 130 / 8 195 / 12 260 / 16 325 / 20

0 B buffers

32 B buffers

128 B buffers

512 B buffers

1 KB buffers

8 KB buffers

Figure 10: System processing times for parallel implementation
with a range of network communication buffer sizes. Reported
times are the average of 20 timed runs. Ratio between the number
of nodes and the number of documents, 16, 250 : 1, is constant for
all data points in this graph. Data used for this experiment consists
of subsets of Clueweb-B. All runs used window size: w = 106.

of the CountMin Sketch d = 2, and error rate err = 8.
Figure 9 shows the load imbalance for various values of n and

various distribution factors. We make two observations, the im-
balance is reduced when indexing modest sized text features, and
the imbalance increases with the number of component instances.
From this data we can conclude that an average component instance
will have ±5% deviation in work load.

The second experiment tests the scalability of the system in a
parallel environment. For this experiment we measure the time re-
quired to index the text features. The number of documents to be
indexed is increased as the number of nodes available is increased.
A scalable system should demonstrate only a minor decrease in
processing time as the number of nodes available and the num-
ber of documents to be indexed is increased. This means that if
the number of documents is doubled, then the number of process-
ing nodes is also doubled and the processing time should remain
constant. Network communication overhead in this system is con-
trolled by buffering data packets into specific sizes. The size of the
buffer is investigated in this experiment.

This experiment was performed on a non-dedicated cluster of
32 dual core machines, each with 4GB of RAM. Network attached
storage was used to store the parsed documents. System parameters
for this experiment are: w = 106, d = 2, h = 16, err = 8.

Figure 10 shows processing times for the parallel implementa-
tions. Reported times are the average of 20 identical runs. The
ratio between the number of documents processed and the number
of computing nodes was kept constant at 16, 250 : 1. This graph
shows that the system is scalable where network communication
uses blocks of size 128 bytes or larger.

8. RELATED WORK
There have been several previous papers on the topic of indexing

of text features. Williams et al. [20] presents the nextword index.
This index allows n-grams or phrases to be accessed using a pair-
wise strategy. This index has been used to significantly improve
phrase retrieval performance [1]. We assert that providing an in-
dex over larger n-grams should result in further efficiency improve-
ments for phrase queries, For some phrase of length k, k − 1 disk
accesses would be required within the nextword index, whereas
k − (n − 1) disk accesses would be required for the n-gram in-

dex.
Chang and Poon [6] modify nextword indexes to index arbitrary

length phrases. The vocabulary of their index is restricted to a set of
common phrases. This type of index is similar to frequent indexes
of text features. Their paper does not detail the costs of indexing
phrases, nor the process of identifying common phrases to index.
We believe that their method relies on a static list of phrases to
index, thus in a dynamic setting their method would not discover
important new phrases.

There have been two previous papers on the topic of frequent

indexes. We have already discussed the indexing techniques pre-
sented by Huston et al. [14]. Bernstein and Zobel [3] present SPEX,
an n-pass approach to indexing repeated n-grams. Their approach
relies on the construction of a series of in-memory filters using hash
tables. The kth filter in their system identifies k-grams that occur
at least twice, and the filter is constructed using the (k− 1)th filter.
Their approach is not suitable for the problem of dynamically in-
dexing frequent text features for the same reasons that the frequent

indexing approaches investigated by Huston et al. [14] are unsuit-
able. SPEX requires several passes over the document collection
and it is not possible to detect and index newly frequent n-grams.

There are a variety of dynamic indexing approaches that are
relevant to this work. Lester et al. [16] compare baseline tech-
niques to their geometric partitioning dynamic indexing technique.
This technique is shown to be an effective method of balancing
the tasks of inserting new documents and merging inverted index
shards while maintaining efficient retrieval speed. Büttcher et al.
[5] present a hybrid dynamic indexing strategy that separates shorter
posting lists from longer posting lists. This approach avoids re-
peated copying of the longer lists. Yamada and Toyama [21] present
a method of performing parallel dynamic index construction over a
multi-core platform. This work shows the first steps towards a full
parallel dynamic index system on a shared-nothing cluster. Guo
et al. [13] present a balanced tree based indexing strategy. This
method is designed for applications where-in document deletions
are commonplace. Each of these dynamic indexing algorithms may
be used in conjunction with our filtered dynamic indexing system.

There are a variety of stream processing algorithms designed to
find ‘heavy hitters’ or frequent items from a stream of data. Cor-
mode and Hadjieleftheriou [7] provide a good summary of some
of the recent work being conducted on this generalized problem.
The first section of the paper focused on counter techniques (see
[17, 11]). The second section looked at the more general problem
of returning items within a given quartile. The third section focused
on sketch based techniques including the CountMin Sketch that we
investigate in this paper.

As specified in the introduction, we have placed several restric-
tions on possible filter data structures. This makes many of the
methods discussed in this paper unsuitable as filter data structures.
Each of the techniques from the first and second sections tracks a
subset of the vocabulary. Each of these data structures stores text
features verbatim, thus their space requirements are dependent on
the size of the textual features being indexed. So, we can elimi-
nate each of these data structures as they violate one of our key
requirements.

If there is insufficient system resources to buffer the text stream
data from the time window on disk, we could consider algorithms
that simulate the effect of the sliding window on the data struc-
ture. Datar et al. [10] present a method of reducing counts based
upon a set of timestamp buckets. Braverman and Ostrovsky [4]
present a second approach based on smooth histograms. This sec-
ond approach uses a similar bucket-based technique, but views the
first bucket as an approximation of the tail buckets. We expect that

these approaches would be useful when the disk space requirement
could not be satisfied.

9. CONCLUSIONS
In this paper, we have proposed a novel system for the dynamic

indexing of frequent text features. We have shown that our system
provides several important guarantees.

First, the proposed system is lossless; all frequent text features
appear within the index. Second, the space requirements of the
system are not determined by the size of the text feature. The RAM
requirements of our system scales linearly with respect to the size
of the time window. Finally, we have shown that the system scales
efficiently in a parallel computing environment.

We have proven that the LinearCountMin sketch provides iden-
tical guarantees as the CountMin sketch. While there is almost no
difference in the accuracy of each structure, the LinearCountMin
sketch provides a more efficient distributed implementation.

We have tested the maximum throughput in a single threaded
environment and showed that the throughput of the filter structure
is independent of the size of time window and the threshold value.
We observe that the throughput is inversely correlated with the size
of the vocabulary. It should be noted that the vocabulary is strictly
limited by the time window size. In our single machine tests, we
are able to process between 100 and 300 features per millisecond,
depending on the parameters and used. This means we can process
one thousand documents, each consisting of ∼ 500 terms, every
two to five seconds on a single machine.

Finally, we have tested this system within a parallel computing
environment. We have seen that there is a load imbalance in the
filter component. But this imbalance does not dramatically hin-
der the system’s performance. Finally, we have observed that the
throughput of the system scales effectively.

Acknowledgment. This work was supported in part by the Cen-
ter for Intelligent Information Retrieval and in part by NSF grant
#IIS-0934322. Any opinions, findings and conclusions or recom-
mendations expressed in this material are the author(s) and do not
necessarily reflect those of the sponsor.

References

[1] Dirk Bahle, Hugh E. Williams, and Justin Zobel. Efficient
phrase querying with an auxiliary index. In Proceedings of

the 25th Int. ACM SIGIR Conf., pages 215–221, 2002.

[2] Michael. Bendersky, Don. Metzler, and W. Bruce Croft.
Learning concept importance using a weighted dependence
model. In Proc. 3rd ACM Int. Conf. Web Search and Data

Mining, pages 31–40, 2010.

[3] Y. Bernstein and J. Zobel. Accurate discovery of co-derivative
documents via duplicate text detection. Information Systems,
31:595–609, 2006.

[4] Vladimir Braverman and Rafail Ostrovsky. Smooth his-
tograms for sliding windows. In Proceedings of the 48th An-

nual IEEE Symposium on Foundations of Computer Science,
pages 283–293, 2007.

[5] Stefan Büttcher, Charles L. A. Clarke, and Brad Lushman.
Hybrid index maintenance for growing text collections. In
Proceedings of the 29th annual international ACM SIGIR

conference on Research and development in information re-

trieval, pages 356–363, 2006.

[6] Matthew Chang and Chung Keung Poon. Efficient phrase
querying with common phrase index. Inf. Process. Manage.,
44:756–769, March 2008.

[7] Graham Cormode and Marios Hadjieleftheriou. Methods for
finding frequent items in data streams. The VLDB Journal,
19:3–20, 2010.

[8] Graham Cormode and S. Muthukrishnan. An improved data
stream summary: the count-min sketch and its applications.
J. Algorithms, 55(1):58–75, 2005.

[9] W. Bruce Croft, Don Metzler, and Trevor Strohman. Search

Engines: Information Retrieval in Practice. Addison-Wesley,
USA, 2009. ISBN 9780136072249.

[10] Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Mot-
wani. Maintaining stream statistics over sliding windows.
SIAM J. Comput., 31:1794–1813, 2002.

[11] Erik D. Demaine, Alejandro López-Ortiz, and J. Ian Munro.
Frequency estimation of internet packet streams with limited
space. In In Proceedings of the 10th Annual European Sympo-

sium on Algorithms, pages 348–360. Springer-Verlag, 2002.

[12] Cristian Estan and George Varghese. New directions in
traffic measurement and accounting. In Proceedings of the

2002 conference on Applications, technologies, architectures,

and protocols for computer communications, pages 323–336,
2002.

[13] Ruijie Guo, Xueqi Cheng, Hongbo Xu, and Bin Wang. Effi-
cient on-line index maintenance for dynamic text collections
by using dynamic balancing tree. In Proceedings of the six-

teenth ACM conference on Conference on information and

knowledge management, pages 751–760, 2007.

[14] Samuel Huston, Alistair Moffat, and W. Bruce Croft. Effi-
cient indexing of repeated n-grams. In Proceedings of the

fourth ACM international conference on Web search and data

mining, pages 127–136, 2011.

[15] Nicholas Lester, Alistair Moffat, and Justin Zobel. Fast on-
line index construction by geometric partitioning. In Proceed-

ings of the 14th ACM international conference on Information

and knowledge management, pages 776–783, 2005.

[16] Nicholas Lester, Alistair Moffat, and Justin Zobel. Efficient
online index construction for text databases. ACM Trans.

Database Syst., 33:19:1–19:33, September 2008.

[17] Gurmeet Singh Manku and Rajeev Motwani. Approximate
frequency counts over data streams. In VLDB, pages 346–
357, 2002.

[18] Don Metzler and W. Bruce Croft. A Markov random field
model for term dependencies. In Proc. 28th Ann. Int. ACM SI-

GIR Conf. on Research and Development in Information Re-

trieval, pages 472–479, Salvador, Brazil, 2005. ACM Press,
NY.

[19] Alistair Moffat, William Webber, and Justin Zobel. Load
balancing for term-distributed parallel retrieval. In Proceed-

ings of the 29th annual international ACM SIGIR conference

on Research and development in information retrieval, pages
348–355, 2006.

[20] Hugh E. Williams, Justin Zobel, and Phil Anderson. What’s
next? - index structures for efficient phrase querying. In Proc.

Australasian Database Conference, pages 141–152, 1999.

[21] Hiroyuki Yamada and Motomichi Toyama. Scalable online
index construction with multi-core cpus. In Proceedings of

the Twenty-First Australasian Conference on Database Tech-

nologies - Volume 104, pages 29–36, 2010.

