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Abstract

We propose a general framework for learning

multiple related learning tasks. The proposed

unified framework can capture various types of

latent structures underlying the weight vectors

of multiple tasks. In doing so, our model can

automatically interpolate to the appropriate task

relatedness assumption as warranted by a given

dataset. For instance, the model can capture mul-

titask learning notions such as a shared Gaussian

prior in the parameter space, task clustering, low-

rank assumption, etc. as special cases, or adapt

itself to a more general combination of these as-

sumptions, addressing their individual shortcom-

ings. Our model, therefore, brings in consider-

able flexibility as compared to these commonly

used multitask learning models that are based on

some a priori fixed notion of task relatedness.

We also present an efficient inference algorithm

for this model. Experimental results on several

real-world datasets, on both regression and clas-

sification problems, establish the efficacy of the

proposed method.
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1 Introduction

When learning many loosely related tasks it is often use-

ful to exploit whatever shared structure they have to im-

prove performance. Multitask learning (Caruana, 1997)

is a range of techniques that allow the models for var-

ious tasks to share statistical strength and learn even if

each individual task has access to a very small number

of labeled examples. Most multitask learning methods

achieve this improved performance by exploring some no-

tion of task relatedness—for example, that all task param-

eters are drawn from a shared prior (Chelba and Acero,

Preliminary work. Under review by AISTATS 2012. Do not dis-
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2006), have a cluster structure (Xue et al., 2007b; Jacob

and Bach, 2008), live on a low-dimensional linear sub-

space (Zhang et al., 2006; Rai and Daumé III, 2010), share

an explicit hierarchical structure among them (Daumé III,

2009), have feature representations shared across multiple

tasks (Argyriou et al., 2007a,b); or by modeling task re-

lationships as a covariance matrix in a Gaussian Process

framework (Bonilla et al., 2007).

Choosing the correct notion of task relatedness is crucial to

the effectiveness of any multitask learning method; an in-

correct modeling assumption can severely hamper the per-

formance. It is therefore desirable to have a flexible model

that can appropriately adapt to the correct notion of task

relatedness for a given problem. Motivated by this, we pro-

pose a Bayesian multitask learning method by imposing

a nonparametric mixture of nonparametric factor analyz-

ers model over the weight vectors of multiple tasks. At its

heart, the proposed model assumes that the weight vectors

of individual tasks are generated from a mixture of low-

rank Gaussians (each low-rank Gaussian corresponds to a

factor analyzer). Moreover, due to the nonparametric na-

ture of our model, neither the number of Gaussians in the

mixture nor their ranks need to be known a priori (the ranks

can even be different for different mixture components).

Depending on the actual inferred numbers, various exist-

ing multitask learning models result as special cases of our

model (Section 3). For example, (1) a single shared Gaus-

sian prior over the weight vectors, (2) the cluster (or, equiv-

alently, a mixture of Gaussians) assumption on the weight

vectors, (3) the subspace assumption (which is equivalent

to the matrix of weight vectors being low-rank (Argyriou

et al., 2007a)), and (4) the manifold assumption on task pa-

rameters (Ghosn and Bengio, 2003; Agarwal et al., 2010).

Note that none of these notions of task relatedness need to

be specified a priori and explicitly under our model, as it

can automatically interpolate itself to use the appropriate

model for a given dataset, or can adapt itself to a more gen-

eral combination of these individual models.

In addition to offering a general framework for multitask

learning, our proposed model also addresses several short-

comings of some of the commonly used multitask learning
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methods. For example, the task clustering approach (Xue

et al., 2007b), which works by fitting a full-rank Gaussian

mixture model over the weight vectors is prone to over-

fitting on high dimensional problems because the weight

vectors are high dimensional and the number of samples

(which is the number of learning tasks) is usually much

smaller. A mixture of factor analyzers based model, like

ours, can effectively deal with this issue by constraining

each mixture component to have a low rank, so the num-

ber of parameters to be estimated is much smaller than the

full rank case. Likewise, the task subspace based mod-

els (Zhang et al., 2006; Rai and Daumé III, 2010) assume

that all the weight vectors live on or close to a shared sin-

gle subspace which can again be a restrictive assumption,

and can even lead to negative transfer if some of the tasks

are unrelated, negatively related, or outliers. Our mixture

of subspaces (each factor analyzer corresponds to a low-

dimensional subspace) based model circumvents these is-

sues by allowing different groups of weight vectors to live

in different subspaces. In light of these aspects, one can

also view our proposed model as allowing the sharing of

statistical strengths at two level: (1) by exploiting the clus-

ter structure, and (2) by additionally exploiting the sub-

space structure within each cluster.

2 Background

Nonparametric Bayesian models (Orbanz and Teh, 2010),

such as the Gaussian Process(Bonilla et al., 2007), the

Dirichlet Process (Ferguson, 1973) and the Indian Buf-

fet Process (Griffiths and Ghahramani, 2006), provide

Bayesian solutions to the problem of model selection in

machine learning. For example, in the context of multi-

task learning, in a clustering based model—such as the one

used in (Argyriou et al., 2008)—one must usually either

determine the number of clusters a priori or fit many dif-

ferent models, each with a different number of clusters, to

the data and then use some other model selection method to

decide the number of clusters. Likewise, in multitask learn-

ing models based on the assumption of task parameters liv-

ing on a low-dimensional subspace (Zhang et al., 2006),

choosing the correct intrinsic dimensionality of the sub-

space is a critical issue. Nonparametric Bayesian methods

sidestep this model selection problem by defining a model

with an unbounded, potentially infinite, complexity, where

the eventual complexity is ultimately decided by the data.

In this section, we briefly describe the Dirichlet Process

mixture model and the Indian Buffet Process which form

the building blocks of the model we describe in Section 3.

2.1 The Dirichlet Process

The Dirichlet Process (DP) defines a distribution over dis-

crete distributions (Ferguson, 1973). Draws from the DP

are discrete with priobability 1. Discreteness implies that

if one draws samples from a distribution drawn from the

DP, the samples would exhibit a clustering property: with a

positive probability, a new sample would take on the same

value to one of the previous samples. Formally, the DP is

described by two parameters: a concentration parameter α
and a base measure G0. The sampling process defining the

DP draws the first sample from the base measure G0. Each

subsequent sample would take on a new value drawn from

G0 with a probability proportional to α, or would coincide

with one of the previously drawn values with a probability

proportional to the number of samples having that value.

The clustering property of the DP makes it suitable to de-

sign infinite mixture models where the number of mixtures

is potentially infinite, and can grow as new samples are ob-

served. Our mixture of factor analyzers based multitask

learning model uses the DP to model the mixture compo-

nents so we do not need to specify their number a priori.

2.2 The Indian Buffet Process

As the Dirichlet Process is a distribution on clusterings of

arbitrary size, the Indian Buffet Process (IBP) (Griffiths

and Ghahramani, 2006) is a distribution on infinite binary

matrices. The IBP can also be seen as a generalization of

the Dirichlet Process: while the DP assigns each observa-

tion to a single cluster, the IBP allows observations to be-

long to multiple clusters. Therefore, while for the DP, the

cluster assignment matrix will have a single 1 in each row,

for the IBP, the matrix can have multiple 1s in each row.

A natural application of the IBP is modeling an a priori un-

known number of latent features underlying observed data.

This can be seen, for example, in infinite sparse factor anal-

ysis (Knowles and Ghahramani, 2007), where a D × N
data matrix X of N samples with D dimensions each is

represented by a sparse linear combination of a set of K
basis vectors (or factors) defined by a D × K matrix Λ:

X = ΛB+E, where B is a K×N binary matrix indicating

which factors are present in each sample, and E consists of

sample specific noise. The Indian Buffet Process (and the

closely related Beta Process (Thibaux and Jordan, 2007;

Paisley and Carin, 2009)) gives such a model the flexibility

that the number of factors K need not be specified a priori

(and is thus potentially infinite).

The IBP can be seen as the infinite limit of a Beta-Bernoulli

model with K factors as the number of factors goes to in-

finity (Thibaux and Jordan, 2007; Paisley and Carin, 2009).

For the model described above, the generative story in the

finite case is (assuming a linear Gaussian model):

Xn ∼ Nor(ΛBn, σ
2
XI)

Λk ∼ Nor(0, σ2I)

Bkn ∼ Ber(πk)

πk ∼ Bet(α/K, 1)

For the more general case of factor analysis, factor com-

bination weights are defined by not binary but real values

so the model is of the form X = Λ(S ⊙ B) + E, where
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S is a real-valued matrix of the same size as B (Knowles

and Ghahramani, 2007) and can be given a Gaussian prior.

Our mixture of factor analyzers based multitask learning

model uses the IBP to model each factor analyzer so we

do not need to specify the number of factors in each factor

analyzer a priori.

3 Mixture of Factor Analyzers based

Generative Model for Multitask Learning

Our proposed multitask learning model assumes that the

task parameters (i.e., the weight vectors) of all the tasks are

sampled from a mixture of factor analyzers (Ghahramani

and Beal, 2000). Note however that our model is defined

over latent weight vectors whereas the standard mixture of

factor analyzers is commonly defined to model observed

data. Furthermore, our setting does not place any a pri-

ori restriction on the number of mixture components or the

number of factors in each factor analyzer by using suitable

nonparametric Bayesian prior distributions (specifically, a

DP for the mixture model, and an IBP for each of the factor

analysis models). Therefore, we essentially have an infinite

(i.e., nonparametric) mixture of infinite factor analyzers.

θ

s b α2

z

α1

µ

Λ

∞

YX

Nt
T

Figure 1: A graphical depiction of our model. The task

parameters θ are sampled from a DP-IBP mixture and used

to generate the Y values.

We assume that we are learning T related tasks, where each

task is represented by a weight vector θt ∈ R
D that is as-

sumed to be sampled from a mixture of F factor analyzers.

Here D denotes the number of features. Each task is a set

of X and Y values, and each Y is assumed to be generated

from the corresponding X value and task weight vector.

According to the generative model, the weight vector θt
for task t is generated by first sampling a factor analyzer

(defined by a mean task parameter µt ∈ R
D and a factor

matrix Λt ∈ R
D×K having K columns) using the DP, and

then generating θt using that factor analyzer.

In equations, each θt can be written as

θt = µt + Λtft + εt

Yt,i ∼ Nor(θt ·Xt,i, I)

θt ∼ Nor(µt + Λt · (st ⊙ bt),
1

σ2
I))

µt,Λt ∼ G

G ∼ DP(α1, G0)

st ∼ Nor(0, I)

πk ∼ Bet(α2/K, 1)

bkt ∼ Ber(πk)

Figure 2: The generative story of the model. The indicator

variable z of Fig 1 is implicit in the draw from the DP.

The Beta-Bernoulli draw for bkt approximates the IBP if

we assume K to be very large (actual K will be inferred

from the data).

The task parameter θt can be thought of as a linear combi-

nation of a set of K basis tasks represented by the columns

of Λt. The combination weights are given by ft which we

represent as st ⊙ bt where st is a real valued vector and

bt is a binary valued vector, both of size K. Therefore θt
is a sparse linear combination of the set of basis vectors

Λt. Note that ft ∈ F
K can also be thought of the low-

dimensional latent representation of the weight vector θt.
Also note that since the pairs {µt,Λt} for each task are

drawn from a DP, they exhibit a clustering property, and

there will be a finite number F < T of unique {µt,Λt}
pairs. Finally, εt ∼ Nor(0, 1

σ2 I) represents task-specific

variations.

Figure 1 shows a graphical depiction of our model. The

generative story of the model for the linear regression case

is shown in figure 2. The DP base measure G0 is a product

of two Gaussian priors for µt,Λt. As the model is nonpara-

metric, neither F nor K need to be specified a priori; they

are learned while doing inference in the model.

For logistic classification, the only change is that the first

line in the generative model becomes Yt,i ∼ Ber(sig(θt ·
Xt,i)), where sig(x) = 1

1+exp(−x) is the logistic function.

A number of existing multitask learning models arise as

special cases of our model as it nicely interpolates between

some different and useful scenarios, depending on the ac-

tual inferred values of F and K, for a given multitask learn-

ing dataset:

• Shared Gaussian Prior(F = 1,K = D): when the

weight vectors of all the tasks are assumed to be drawn

from a shared Gaussian prior, and differ from each

other only in specific ways (Chelba and Acero, 2006).

For our model, this corresponds to a single factor ana-

lyzer modeling either a diagonal or full-rank Gaussian

as the prior.

• Cluster-based Assumption(F > 1,K = D): when



Manuscript under review by AISTATS 2012

the tasks are expected to have a cluster structure where

a few groups of tasks are mostly identical (Xue et al.,

2007b; Jacob and Bach, 2008). For our model, this

corresponds to a mixture of identity-covariance or

full-rank Gaussians as the prior.

• Linear Subspace Assumption(F = 1,K < D):

when the tasks, while different, vary only on a sin-

gle, shared linear subspace of parameter space (Zhang

et al., 2006; Rai and Daumé III, 2010). For our model,

this corresponds to a single factor analyzer with less

than full rank.

• Manifold Assumption: as we are modeling a mix-

ture of linear subspaces, the tasks can easily be seen to

lie on a nonlinear subspace (Chen et al., 2010), which

might be interesting for task sets where the task space

is only locally linear. Therefore, our model can also

be seen as a nonparametric, Bayesian analog of the

manifold based models of multitask learning (Ghosn

and Bengio, 2003; Agarwal et al., 2010).

• Transfer Learning: due to the structure of the non-

parametric Bayesian priors employed in this model

it can be easily adapted to a transfer learning setting

where new tasks are observed over time, as new sam-

ples in a DP or IBP model can either share parameters

with old samples or exhibit entirely different structure

if appropriate, avoiding negative transfer.

As our model is nonparametric, it can interpolate between

these cases as appropriate for a given multitask learning

problem, without the need to change the model structure

or hyperparameters. Moreover, by replacing the Gaus-

sian prior on the low-dimensional latent task representa-

tions st ∈ R
K by a prior of the form P (st+1|st) encoding

Markovian-like dependencies, this model can even capture

time-varying tasks. For the rest of the exposition, however,

we will be assuming a Gaussian prior over st.

3.1 Variational inference

As this model is infinite and combinatorial in nature, ex-

act inference is intractable and sampling-based inference

may take a long time to converge (Doshi-Velez et al.,

2009; Blei and Jordan, 2006). For these reasons we em-

ploy a variational mean-field algorithm to perform in-

ference in this model. To do so, we lower-bound the

marginal log-probability of Y given X using a fully fac-

tored approximating distribution Q over the model param-

eters θ, µ,Λ, z, d, s:

logP (Y |X) = logEP [P (Y |X, θ, µ,Λ, z, b, s)]

≥ EQ[logP (Y |X)]

−EQ[logQ(Y |X)].

To do this, however, we need to approximate the Dirichlet

and Indian Buffet processes with an easy to work with dis-

tribution Q over the space of partitions. We approximate

the Dirichlet process with a finite stick-breaking distribu-

tion, based on the infinite stick-breaking representation of

the DP (Blei and Jordan, 2006). In this representation, we

introduce, for each θt, a multinomial random variable zt
that indexes the infinite set of possible mixture parameters

µ and Λ. The zt vector is nonzero on its i-th component

with probability φi

∏

j<i(1−φj), where φ is an infinite set

of independent Bet(1, α1) random variables. For the finite

approximation to the DP all we need to do is set a given φi

to 1, which brings the probability of zj for j > i necessar-

ily to 0. While there is a similar stick-breaking construction

to the IBP (Teh et al., 2007), variational inference with it is

not in the exponential family and requires complicated ap-

proximations (Doshi-Velez et al., 2009), so we represent

the IBP by the finite Beta-Bernoulli process as described in

section 2.2.

The distribution we are approximating, then, is (for the lin-

ear regression case) is shown in Figure 3 (top). The stick-

Yt,i ∼ Nor(θTt Xt,i, I).

θt ∼ Nor(µzt + Λzt(st,zt ⊙ bt,zt),
1

σ2
I)

bt,f,k ∼ Ber(βf,k)

µf ∼ Nor(0, I)

Λf,k ∼ Nor(0, I)

st,f ∼ Nor(0, I)

zt ∼ SBP (φ)

φf ∼ Bet(1, α1)

βf,k ∼ Bet(α2/K, 1).

Q(θ) = Nor(νθt , I)

Q(s) = Nor(νst,f , I)

Q(Λ) = Nor(νΛf
, I)

Q(µ) = Nor(νµf
, I)

Q(b) = Ber(νb)

Q(β) = Bet(ρ1, ρ2)

Q(z = i) = νzt,i

Q(φ) = Bet(γ1, γ2).

Figure 3: Top: the distribution being approximated. Bot-

tom: Our approximating Q distribution (note: P (Y |θ) is

lower-bounded directly)

breaking distribution SBP which is the prior for zt is such

that P (zt= i) = φi

∏

j<i(1− φj).
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In our variational distribution we set the number of factor

analyzers in the truncated stick-breaking representation to

a hyperparameter F and the number of factors in each such

analyzer to a truncation level hyperparameter K. After in-

ference, if the truncation levels are set high enough, most

factor analyzers and factors will not be used, effectively ap-

proximating the property of the infinite model that only a

small finite number of components is ever used to model a

finite data set. It is worthwhile to note that while the solu-

tion found by the variational approximation is necessarily

finite and with complexity bounded by the truncation pa-

rameters, it will still implicitly perform model selection and

will more often than not concentrate most of its posterior

mass on models with less complexity than the truncation

parameters suggest. Ishwaran and James (Ishwaran and

James, 2001) present two theorems to help choose these

truncation levels, as using smaller values of F and K (par-

ticularly K, as the update equations are quadratic in K) can

lead to significant savings of computing time.

Our approximating Q distribution is shown in Figure 3

(bottom). For the linear regression case, we treat P (Y |θ)
by lower-bounding it directly, without introducing an ap-

proximating distribution for Y . In the case of logistic re-

gression, we use the lower bound by (Jaakkola and Jordan,

1996) that allows us to integrate out the logistic function.

The detailed derivation of the full lower bound and

the updates can be found in the supplementary mate-

rial. Apart from approximating the DP with the trun-

cated stick-breaking prior, approximating the IBP with a

set of symmetric, finite Beta distributed variables, and

lower-bounding the logistic function with a quadratic, all

the computations involved in deriving the lower bound are

exponential-family computations. Note that for Q we could

use a more general covariance instead of identity matrix

(the model would still stay the same; only the update equa-

tions would change slightly). In practice, we found that

for classification performance it does not matter what level

of confidence we are using. Moreover, it would be com-

putationally costly to model the covariances more explic-

itly (one hyperparameter for each feature). Another less

expensive option however would be to use the same hy-

perparameter for each feature, i.e., a spherical (instead of

diagonal) covariance τ2I which would require optimizing

w.r.t. a single hyperparameter τ .

The updates for the variational distributions are all as fol-

lows (for a full derivation, see the supplementary material):

γf,1 = 1 +
∑

t

νzt,f

γf,2 = α1 +
∑

t

∑

j>f

νzt,j

νzt,f ∝ exp
(

Ψ(γf,1)−Ψ(γf,1 + γf,2)

+
∑

j<f

(Ψ(γj,2)−Ψ(γj,1 + γj,2))

+EQ[logP (θt|zt = f)]
)

ρf,k,1 =
α2

K
+
∑

t

νbt,f,k

ρf,k,2 = 1 +
∑

t

(1− νbt,f,k)

νbt,f,k = sig
(

Ψ(ρf,k,1)−Ψ(ρf,k,2)

+ σνzt,f

([

νθt − νµf
− (νst,i + 1)νΛf,i

−
∑

j 6=i

νst,jνbt,f,jνΛf,j

]T

νΛf,i
νst,i

−
D

2
ν2st,i −

DF

2

))

νst,i = (1 + σνzt,f νbt,f,i(D + ||νΛf,i
||2))−1

νzt,fσ
((

νθt − νµf

− 0.5
∑

j 6=i

νst,f,jνbt,f,jνΛf,j
)
T
νΛf,i

νbt,f,i

)

νµf
=

∑

t νzt,fσ(νθt − νΛf
(νst,f ⊙ νbt,f ))

1 + σ
∑

t νzt,f

νΛf,i
=

(

1 + σ
∑

t

νzt,f νbt,f,i(1 + ν2st,f,i)
)−1

σ
∑

t

νzt,f νst,f,iνbt,f,i

(

νθt − νµf

−
1

2

∑

j 6=i

νst,f,jνbt,f,jνΛf,j

)

In the above and the rest of the exposition, Ψ denotes the

digamma function. While it is possible to update νθt ana-

lytically, the update requires inverting a matrix, and in our

experiment this matrix was often ill-conditioned, so we up-

dated νθt by optimizing the lower bound with the L-BFGS-

B optimizer (Zhu et al., 1997). The L-BFGS-B is run until

convergence at each step of the iteration, making it a dou-

ble loop algorithm. We note that it could be replaced by

any other optimizer, including gradient methods, with no

change in the algorithm.

For regression, the gradient of the lower bound with respect

to νθt is

∇L(νθt) = σ
∑

f

νzt,f
(

νθt − νµf
− νΛf

(νst,f ⊙ νbt,f )
)

+

Nt
∑

i

(

Yt,iXt,i −Xt,iX
T
t,iνθt

)

.

For classification the gradient is similar, the main differ-

ence being that there is an extra factor in the Xt,iX
T
t,iνθt

term involving the variational parameter for the lower

bound of the logistic function. More details can be found

in the supplementary material.
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We also optimize the lower bound w.r.t the precision pa-

rameter σ to obtain an empirical Bayes estimate of it:

1

σ
=
∑

t

∑

f

νzt,f

(

||νθt − νµf
− νΛf

(νst,f ⊙ νbt,f )||
2

KDF

+

∑

i νbt,f,i(ν
2
st,f,i

+ ||νΛf,i
||2)

KF
+

1

K

)

.

The α1 and α2 hyperparameters we hold fix and optimize

by cross-validation.

We initialize the inference process with νθt set to the maxi-

mum likelihood solution to each task’s regression or classi-

fication problem. Then we alternate updating all other pa-

rameters to convergence and updating νθt given the other

parameters. The value of νθt , and hence the regression or

classification accuracy, stabilizes after the first couple of it-

erations, usually, and the only changes observed are further

improvements to the lower bound.

3.2 Other variations of the model

The model we adopted is not the only possible version of

a nonparametric mixture of nonparametric factor analyz-

ers model for multitask learning. A key assumption in our

model is that each task will have its own independent θ pa-

rameter. In some settings it might be interesting, instead,

to assign a single θ parameter to groups of tasks instead of

individual tasks. This means only adding another DP layer

to our model: θ variables would be sampled from a Dirich-

let process with our prior as a base measure (effectively

making this model a hierarchical Dirichlet process mixture

model (Teh et al., 2006)). Since this assumption seems less

general than the one proposed here, we leave this model as

a possible future work.

Another possible variation of this model is going from a

fully discriminative regime, as presented here, to a gen-

erative regime. For example, our nonparametric mixture

of infinite factor analyzers prior can be assigned to the

class means for a linear discriminant model for classifica-

tion, or a mixed generative-discriminative model for semi-

supervised multitask learning.

4 Experiments

We compared our proposed model against a number of

baselines on several real-world datasets, on both linear re-

gression and classification settings. The baselines we used

are: (1) Independently learned tasks (STL), (2) Multitask

Feature Learning (Argyriou et al., 2007a) (MTFL, for re-

gression tasks), (3) Shared Gaussian prior over task pa-

rameters (Chelba and Acero, 2006) (PRIOR), (4) single

shared subspace (Zhang et al., 2006; Rai and Daumé III,

School Computer

STL 468.7 153.3

MTFL 376.1 30.4

MFA-MTL 374.5 29.8

Table 1: Mean squared error (MSE) on the regression task.

Each method was given 20% of the training data

2010) (RANK), (5) DP clustering based multitask learn-

ing (Xue et al., 2007b) (DP-MTL). In the experiments, we

would refer to our model as MFA-MTL (Mixture of Factor

Analyzers for MultiTask Learning). In all our experiments,

we set the hyperparameter α1 = 1 and α2 = 5. The trunca-

tion level for the DP can chosen to be equal to the number

of tasks T , and for the IBP, to be the minimum of T and

the number of features in the data. This is often more than

necessary and in most of our experiments, much smaller

truncation levels were found to be sufficient.

In our first experiment, we compared MFA-MTL with STL

and MTFL on regression tasks (we skip the other baselines

as they performed equally or worse than MTFL). For this

experiment, we used two datasets used commonly in multi-

task learning literture: (1) School: This dataset consists of

the examination scores of 15362 students from 139 schools

in London. Each school is a task so there are a total of 139

tasks for this dataset. (2) Computer: This dataset consists

of a survey of 190 students about the chances of purchasing

20 different personal computers. There are a total of 190

tasks, 20 examples per task, and 13 features per example.

For both School and Computer datasets, we split the data

equally into training and test set, and experimented with

a varying fraction of the training data. With 20% training

data, the average mean squared errors (i.e., across tasks)

in predicting the responses by each method are shown in

Table 1. As we can see from Table 1, in this setting, MFA-

MTL performs better than both STL and MTFL on both

datasets. Moreover, we noted that using the full training set

of the School data, while the STL baseline outperformed

MTFL (MSE = 271.1 vs MSE = 278.5), our method MFA-

MTL (MSE = 261.4) still outperformed STL on the full

training data.

We next experimented with the classification setting. For

this, we choose two datasets. (1) Landmine: The land-

mine detection dataset is a subset of the dataset used in

the symmetric multitask learning experiment by (Xue et al.,

2007b). It contains 19 classification tasks and the tasks are

known to be clustered for this data. (2) 20ng: We did the

standard training/test split of 20 Newsgroups for multitask

learning, following (Raina et al., 2006). For this dataset

we report average accuracy over all tasks. The results on

the landmine and 20 Newsgroups datasets are shown in Ta-

ble 2.

As we can see in Table 2, our method outperforms the var-

ious baselines. We note that 3 of them (PRIOR, RANK,
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Landmine 20ng

STL 52.9% 69.3%

PRIOR 52.9% 75.8%

RANK 53.8% 75.8%

DP-MTL 53.8% 75.7%

MFA-MTL 62.4% 76.9%

Table 2: Classification accuracies of various methods on

the Landmine and 20ng datasets

and DP-MTL), which are methods proposed in prior work,

are actually special cases of our model (as discussed in

Section 3). In particular, RANK performs worse than our

method because it allows all weight vectors to share the

same subspace which is not desirable if not all the tasks

are related with each other. Likewise, DP-MTL performs

worse than our method because it fits a full-rank Gaus-

sian (unlike our method which fits a low-rank Gaussian) for

each mixture component and is especially prone to overfit if

the number of tasks is smaller than the number of features.

Also, based on the results reported elsewhere in the liter-

ature (Daumé III, 2009), we found that our accuracies on

the 20 Newsgroups data (for the same training/test split)

are also better than several other state-of-the-art multitask

learning methods (such as the matrix stick-breaking pro-

cess (Xue et al., 2007a), multitask learning using latent hi-

erarchies (Daumé III, 2009), etc.).
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Figure 4: Average classification accuracies across tasks w.r.t. the
number of training examples per task (for 20 Newsgroup data).
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Figure 5: Mean squared error across tasks w.r.t. the percentage
of training examples per task (for Computer regression data).

We also investigated the behavior of different algorithms

when the amount of training data is very small. For this,

we varied the number of training examples per task from

20 to 100 with increments of 20. The results for the 20

Newsgroup data are shown in Figure 4. To uncrowd the

figure, we compared only with STL and DP-MTL. We see

that, in the small data regimes, our algorithm performs fa-

vorably as compared to both STL and DP-MTL. Figure 5

shows a similar plot for the Computer regression dataset.

Remarkably, we see that even with about 20% of the train-

ing data, MFA-MTL results in almost similar accuracies as

the full training data.

5 Related Work

Apart from the prior work on multitask learning mentioned

in Section 1, our model can be considered as a nonpara-

metric probabilistic analogue to the model proposed in (Ar-

gyriou et al., 2008). Their model assumes that tasks can be

partitioned into groups and tasks within each group share

a kernel. Their assumption is an extension of the ear-

lier work on Multitask Feature Learning (Argyriou et al.,

2007a) (one of the baselines we used in our experiments)

that assumes all tasks share the common kernel (which

also amounts to assuming that the matrix of weight vectors

Θ = {θ1, . . . , θT } is low-rank (Argyriou et al., 2007a)).

Among other works, the assumption of task parameters liv-

ing in a nonlinear subspace has been used in the mani-

fold based multitask learning model of (Ghosn and Bengio,

2003; Agarwal et al., 2010). However, the model assumes

a single manifold shared by all task parameters and it does

not have a built-in mechanism to deal with outlier (or neg-

atively related) tasks. Therefore it seems likely that a few

outlier or negatively related tasks could adversely affect the

performance of this model. Moreover, the manifold is para-

metrically defined with the intrinsic manifold dimensional-

ity need to be specified a priori.

The generative model we proposed in this paper offers a

number of advantages over the above models such as the

ability to deal with missing data in a principled manner

and doing automatic model complexity control in a fully

Bayesian nonparametric setting.

Canini et al. (Canini et al., 2010) propose hierarchical

Dirichlet process models as good models for human cat-

egorical learning. The central idea is that one can model

transfer learning by assuming that people unsupervisedly

learn subgroups of known classes and use these groups to

refine the knowledge of new classes by sharing subgroups

via a hierarchical Dirichlet process. Our model can be seen

as a discriminative analog of their generative model, where

aspects of the task parameter—instead of the distribution

of the test examples—are shared among similar tasks and

the sharing structure is discovered automatically.
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6 Future Work and Discussion

We proposed and evaluated a fully nonparametric Bayesian

multitask learning model that usefully interpolates between

many different previously proposed models for estimat-

ing task parameters of multiple related learning learning

problems, such as a shared Gaussian prior (Chelba and

Acero, 2006), a clustering structure (Xue et al., 2007b), re-

duced dimensionality (Argyriou et al., 2007a; Zhang et al.,

2006), manifold structure (Ghosn and Bengio, 2003; Agar-

wal et al., 2010), and transfer learning. We presented a

variational mean-field algorithm for this model that ex-

hibits competitive results on a set of standard and synthetic

multitask learning data sets. The proposed model, by us-

ing the flexibility afforded by nonparametric bayesian tech-

niques, requires only minimal assumptions to be applied to

any given multitask learning problem. A possible future

direction of work is in studying the hierarchical Dirichlet

process mixture model suggested in Section 3.2 for sce-

narios in which the assumption that different tasks should

share the same task parameter is natural. Another inter-

esting variant of our model would be to use artificially la-

beled, multiple auxiliary tasks (in a setting where we do not

have access to multiple real tasks) for learning the struc-

tural parameters (Ando and Zhang, 2005) underlying the

tasks, which in our case are the parameters of the mixture

of factor analyzers model. These structural parameters can

then be used to help learn a new single target learning task.

Appendix I - Variational Lower Bound

The variational lower bound, following (Jordan et al.,

1999), is the following sum:

logP (Y |X) ≥ Eq[logP (φ)]

− Eq[logQ(φ)] + Eq[logP (µ)]

− Eq[logQ(µ)] + Eq[logP (ρ)]

− Eq[logQ(ρ)] + Eq[logP (Λ)]

− Eq[logQ(Λ)] + Eq[logP (z)]

− Eq[logQ(z)] + Eq[logP (s)]

− Eq[logQ(s)] + Eq[logP (b)]

− Eq[logQ(b)] + Eq[logP (β)]

− Eq[logQ(β)] + Eq[logP (θ)]

− Eq[logQ(θ)] + Eq[logP (Y )].

Computing each such term involves exponential family cal-

culations. For the full details, see the supplementary mate-

rial. The lower bound for each variable is as follows (please

see the supplementary material for the full derivations):

For Eq[logBet(1, α1)]− E[logBet(γi,1, γi, 2)] we have

log Γ(1 + α1)− log Γ(α1)

+ (α1 − 1)(Ψ(γi,2)−Ψ(γi,1 + γi,2))

− log Γ(γi,1 + γi,2) + log Γ(γi,1) + log Γ(γi,2)

− (γi,1 − 1)(Ψ(γi,1)−Ψ(γi,1 + γi,2))

− (γi,2 − 1)(Ψ(γi,2)−Ψ(γi,1 + γi,2)).

For Eq[logP (βf,k)]− Eq[logQ(βf,k)] we have

logα2

+ (α2 − 1)(Ψ(ρf,k,1)−Ψ(ρf,k,1 + ρf,k,2))

− log Γ(ρf,k,1 + ρi,2)

+ log Γ(ρf,k,1) + log Γ(ρf,k,2)

− (ρf,k,1 − 1)(Ψ(ρf,k,1)−Ψ(ρf,k,1 + ρf,k,2))

− (ρf,k,2 − 1)(Ψ(ρf,k,2)−Ψ(ρf,k,1 + ρf,k,2)).

For Eq[logP (bt,f,k)]− Eq[logQ(bt,f,k)] we have

νbt,f,k(Ψ(ρf,k,1)−Ψ(ρf,k,1 + ρf,k,2))

+ (1− νbt,f,k)(Ψ(ρf,k,2)−Ψ(ρf,k,1 + ρf,k,2))

− νbt,f,k log νbt,f,k − (1− νbt,f,k) log(1− νbt,f,k).

For Eq[logP (µf )]− Eq[logQ(µf )] we have

−
D

2
log 2π −

1

2
||νµf

||2 −
D

2
+

D

2
log 2πe.

For Eq[logP (Λf,k)]− Eq[logQ(Λf,k)] we have

−
D

2
log 2π +−

1

2
(||νΛf,k

||2 +D) +
D

2
log 2πe.

For Eq[logP (zt)]− Eq[logQ(zt)] we have

F
∑

f =1









F
∑

j=f+1

νzt,j



 (Ψ(γf,2)−Ψ(γf,1 + γf,2))

+ νzt,f (Ψ(γf,1)−Ψ(φf,1 + γf,2))





−
∑

f

νzt,f log νzt,f .

For Eq[logP (st,f )]− Eq[logQ(st,f )] we have

−
D

2
log 2π −

1

2
||νst,f ||

2 −
D

2
+

D

2
log 2πe.
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For Eq[logP (θt)]− Eq[logQ(θt)] we have

−0.5 log 2π + 0.5D log 2πe+ 0.5D log σ

− 0.5σ(νTθtνθt +D − 2νTθtνµf
− 2νTθtνΛf

(νst,f ⊙ νbt,f )

+ 2νTµf
νΛf

(νst,f ⊙ νbt,f ) + νTµf
νµf

+D

+
∑

i

ν2st,f,iνbt,f,iν
T
Λf,i

νΛf,i
+
∑

i

ν2st,f,iνbt,f,iD

+
∑

i

νbt,f,iν
T
Λf,i

νΛf,i
+ νbt,f,iDF

+
∑

i

νst,f,iνbt,f,i
∑

j 6=i

νst,f,jνbt,f,jν
T
Λf,i

νΛf,j
).

And finally for Eq[logP (Yt,i)] we have

−
D

2
log 2π −

1

2
Y 2
t,i + Yt,iν

T
θt
Xt,i

−
1

2
XT

t,iXt,i −
1

2
XT

t,iνθtν
T
θt
Xt,i.

By combining these expressions one can write down the

full lower bound.
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