
Finding Words in Alphabet Soup: Inference

on Freeform Character Recognition for

Historical Scripts

Nicholas R. Howe a

aDept. of Computer Science, Smith College, Northampton, MA 01063

Shaolei Feng b R. Manmatha b

bDept. of Computer Science, University of Massachusetts, Amherst, MA 01003

Abstract

This paper develops word recognition methods for historical handwritten cursive

and printed documents. It employs a powerful segmentation-free letter detection

method based upon joint boosting with histogram-of-gradients features. Efficient

inference on an ensemble of hidden Markov models can select the most probable se-

quence of candidate character detections to recognize complete words in ambiguous

handwritten text, drawing on character n-gram and physical separation models.

Experiments with two corpora of handwritten historic documents show that this

approach recognizes known words more accurately than previous efforts, and can

also recognize out-of-vocabulary words.

Key words: Character recognition, cursive text, historical text

Preprint submitted to Pattern Recognition 4 January 2009

1 Overview

Modern offline recognition methods transcribe most machine-printed text with

ease, and also handle handwriting within restricted contexts such as postal ad-

dresses. But open-vocabulary cursive scripts remain a challenge, particularly

for older documents in less than pristine condition. Handwritten documents

with large vocabularies [1] and handwritten historical documents [2,3] are par-

ticularly challenging. Reliable recognition of texts from historical collections

is often infeasible with current technology, and yet holds the potential to open

new worlds to scholarship.

This paper introduces a handwriting recognizer with a flexible inference model

that utilizes results from a character detector (rather than a segmented charac-

ter recognizer). The character detector identifies putative characters and their

locations along with associated confidence scores for each detection; this is the

“alphabet soup”. Usually there will be many more putative characters than

real ones. The inference task thus is to identify the most probable sequence of

correct detections. The choice must account for spacing and transition prob-

abilities between letters, in combination with the level of confidence in each

detection. In effect, selected detections are “strung together” to form a word

in a manner that maximizes joint likelihood for all these considerations. (See

Figure 3 below for an illustration.) For reasons detailed in Section 3 we use

an ensemble of hidden Markov models (HMMs) for this purpose; simultane-

ous inference over the entire ensemble can be done using an efficient dynamic

programming algorithm.

The character detector in this work is based on a classifier developed for ob-

ject recognition and trained by a procedure called joint boosting [12]. Focusing

2

on detection allows us to entertain many overlapping hypotheses for letters

and positions, and more easily handles connected text. This differs from tra-

ditional segmentation schemes which usually allow for a single hypothesis at

each position. Because the system builds words out of individual characters, it

can recognize novel words not seen in the training documents. Note that our

approach decouples the character detector from the inference stage – one can

easily replace the character detector with a different one that works better for

a given purpose.

Comprehensive surveys document a wide range of methods employed for hand-

writing recognition, but only a minority handle unrestricted cursive text [4,5].

Prior work on cursive historic documents has favored a holistic word recog-

nition approach [6,7,3,8], which creates an unreasonable burden in providing

comprehensive training data. To address this, several works have attempted to

build words out of smaller units [9–11]. However, each of these earlier works

uses an inference model that limits the choices for character detection and

representation.

In the next section we discuss the related work in more detail. We follow this up

with a section which describes how the preprocessing and character detection

are done. Section 3 describes the hidden Markov models and the inference

schemes used. The next section describes the experiments performed on two

different datasets while the last section concludes the article.

1.1 Related Work

Offline handwriting recognition has worked well in small-vocabulary and highly

constrained domains like bank check recognition and postal address recogni-

3

tion. In recent years researchers have investigated large vocabulary handwrit-

ten documents using HMM’s [13,1]. Marti and Bunke [13] propose to use an

HMM for recognition of handwritten material. Each character is represented

using an HMM with 14 states. Words and lines are modeled as a concatena-

tion of these Markov models. A statistical language model is used to compute

word bigrams and this improves the performance by 10%. Vinciarelli et al. [1]

use a similar model. Both papers test their results using the IAM data set,

a large-vocabulary collection of modern multiple-writer handwriting created

expressly for research in handwriting recognition.

Handwritten historical manuscripts present different challenges since they were

not created with machine recognition in mind, their vocabulary may be large,

and the documents themselves are often noisy. Even the papers of single his-

torical figures like George Washington consist of multi-authored multi-writer

collections; George Washington had almost 30 secretaries over the years who

helped him draft and write the letters [14]. Rath et al [8] focus on recogniz-

ing historical handwritten manuscripts using simple HMMs with one state

for each word. By adding word bigrams from similar historical corpora they

show that the word recognition rate on a set of pages of George Washington’s

documents approached 60%. The GW experiments here are done on the same

corpus. Adamek et al. [7] use novel features with nearest neighbors to obtain

still better performance on this dataset. Rath & Manmatha use word spotting

to index the George Washington manuscripts [15]. Feng and Manmatha [16]

compare a number of different kinds of models including conditional random

fields and HMM’s and show that smoothing is important for good perfor-

mance. Edwards et al. [9] use gHMM’s to recognize Latin manuscripts. Rath

et al. [2] use relevance models to create a search engine for historical docu-

ments while Howe et al. [3] use boosted decision trees to recognize handwritten

4

documents.

The approach to word recognition herein resembles recent work on breaking

visual CAPTCHAs [17]. Like the present work, Mori & Malik detect potential

letters and search for a likely combination, but their assembly algorithm differs

from the inference used here. To date no results have appeared in the literature

for general text recognition under their method and it is unclear whether

such an application is feasible. Other segmentation-free approaches have also

appeared recently [18,19].

While HMM models have a strong history in both print and handwritten

character recognition [20], the ensemble of HMM’s proposed here is new; it

bears some relation to a model for aligning printed word characters to ground

truth as proposed in [21].

2 Preprocessing and Character Detection

Historic documents vary widely in quality. Although the documents tested in

Section 4 have suffered some degradation, they are in reasonable condition

and show manageable amounts of staining and bleed-through. No scaling or

deslanting are necessary in the experiments described here. Although the GW

data set includes slanted text, the amount of slant remains fairly consistent

and the recognition algorithm simply learns to detect characters with the

slant. On the other hand, inconsistent ink fading can cause trouble and thus

the documents are binarized [22]. Space constraints preclude describing details

of the binarization method employed, as it is not central to the success of the

word recognition at the focus of this paper.

5

As its character detector, this work uses a classifier that accepts a featural

description of the environment of any point in the document, and determines

whether the point qualifies for membership in any of the character classes it has

been trained to recognize. More specifically, the joint boosting classifier used

here computes a set of scores to indicate its confidence that the point belongs

to each and every target class; these scores will be used during inference as

proxies for the log generative probabilities. (Normally positive scores indicate

character class membership and negative scores indicate non-membership, but

in practice the threshold will be set lower to include near-misses.) The remain-

der of this section describes the creation of the detector/classifier training set,

the features used to characterize a point of interest, the boosting process, and

further details of the detector/classifier application.

2.1 Character Model Training

Training requires multiple examples of each character class, taken from a train-

ing document similar to the one to be recognized. The baseline experiment

(designated T32 below) uses hand-identified samples of each target character,

extracted using an interactive tool to draw polygons around select portions

of the training images. This character training set contains around sixteen

examples of each character class, or fewer for cases where the training data

did not contain enough examples of a character. 1 The samples of each char-

acter class are aligned by subjecting their images to an entropy-minimizing

warping transformation called congealing [23], then mapping the center point

of the transformed and aligned images back to the original. This provides a

1 In fact 32 samples of each character were identified where available, but these are
split between two folds in the experiments.

6

consistent detection point for all training samples.

Sixteen examples per class is insufficient for optimal classification. To provide

additional training data to the classifier without excessive human effort, a

second, extended training set utilizes automatic techniques to supplement the

original hand-segmented samples with additional examples located automati-

cally. The resulting set contains up to 128 examples of each character where

available, selected from the training corpus, and is designated T128 in the

experimental results. The automatic training set expansion relies on the orig-

inal T32 training samples and a transcript of the training data from which

the additional samples are to be extracted. Section 3.5 below describes the

method for automatically locating the additional samples. Because they have

not been hand-segmented, the extra characters cannot be aligned using the

same method as the originals. However, analysis of the results suggests that

the lack of precise alignment actually improves the generality of the T128

detector/classifier.

2.2 Feature Sets

The features used for detection play a major role in determining its success.

They must be simple enough to be consistent across diverse examples of each

character, yet discriminative enough to distinguish between two characters

with similar appearance. Prior work often uses features which are either too

small in number for good discrimination or too complicated for consistency.

For example, Marti and Bunke use a sliding column over the word with only

9 features, which include column coordinates and second moments [13]. Vin-

ciarelli et al. use a sliding window which counts the pixels in each cell [1].

7

Projection profiles were used by Lavrenko et al [8]. The histogram of gradi-

ents (HoG) used here consists of features that measure the fraction of image

gradients within a given area that are aligned in a given range of directions

[24]. HoG implementations differ in the number of directional bins used, the

resolution of the spatial bins, and the area over which the histogram is com-

puted. Previous use of HoG in handwriting include those used as part of the

GSC set of features [31]. In this case 12 directional bins are used for computing

the gradient over the word image, and histograms are computed over a 4x4

sampling window. The histogram counts are thresholded so that counts below

a minimum number are not used. More recently, for word spotting Rodriguez

and Perronin compute histogram gradients over a sliding window using a 4x4

grid and 8 directions[32].

We now describe our use of HoGs. Because the images have been binarized, our

gradients naturally group into eight directions plus areas of zero gradient. Nine

binary maps therefore represent the spatial distribution of the various gradient

orientations, and the original binary image forms a tenth distribution. Each

of these maps is then summed across spatial histogram bins at three different

resolutions and normalized to yield a final set of 2830 HoG features with values

in the range 0 to 255. More specifically, the spatial histogram bins comprise a

15× 15 array of bins each four pixels across, a 7× 7 array of bins each eight

pixels across, and a 3× 3 array of bins each sixteen pixels across, as shown in

Figure 1. At each resolution the bin arrays center on the detection point.

8

Fig. 1. A portion of a word, showing the spatial extent of the histogram of gradient
features. Bins at three different resolutions are used, and ten different gradient
feature sums are computed for each bin, giving 2830 HoG features.

2.3 Boosting Algorithm and Implementation

Boosting classifiers learn an additive function that maps feature sets to class

indicator scores, which should be either positive or negative depending on

the correct class label of each sample. Our joint boosting algorithm follows

that of Torralba, et al. [12] but uses a different functional form found to be

more effective for this problem; the change requires modification to several

subsequent computations as summarized in Figure 2. Training proceeds in

rounds, selecting one optimal feature for addition to the classifier at each

round, and modifying the indicator scores for each class according to the

value of the selected feature. At each round r, the best choice for feature

fr, threshold θr, and the applicable subset of classes Sr must be discovered

by direct search. A greedy heuristic is used to avoid examining all possible

class subsets, starting with just a single class in Sr and expanding by the best

remaining class one at a time until the full set has been included. Ten different

thresholds are tested for each feature, equally spaced between the minimal and

maximal values observed for that feature.

Our algorithm differs from prior work in one crucial respect: Torralba et al.

use a binary threshold function δ(vf
i > θ) in Equation 2, which sometimes

chooses features that discriminate classes by only a narrow margin. Since such

9

features will be vulnerable to noise, we bias the classifier towards more reliable

features by replacing the binary threshold with the continuous sigmoid-like

soft threshold function shown below (Equation 1). The introduction of soft

thresholds was found during early experimentation to give significantly better

results.

δ̃(vf
i , θ) =

1

2

(

erf

(

vf
i − θ

σ

)

+ 1

)

(1)

Here the free parameter σ controls the width of the border margin. Values

falling within the margin are treated as insufficiently discriminative. (In the

experiments, σ is set to 5.) The change gives preference to features offering

wide discrimination margins at each boosting step. Changing to soft thresholds

also requires new expressions for the optimal computed parameters, as given in

Equations 4-6 of Figure 3. These are derived by minimizing the error function

(Equation 3). Although the new expressions are more complicated than Tor-

ralba’s, the asymptotic complexity of the algorithm remains unchanged. Our

technique resembles the method of Vedaldi et al. [25] in applying additional

constraints during training in order to improve later accuracy. It improves

upon the simpler feature knock-out approach of Wolf and Martin[26] since it

does not require extra training.

Training on the joint boosting algorithm proceeds for R = 1500 rounds on the

T32 experiments and 2000 rounds on the T128 experiments. This is easily suf-

ficient for perfect performance on the training set, yet empirically it appears

short enough to avoid overfitting. Although the training takes many CPU

hours due to the search required, the resulting classifier runs fairly quickly:

computing the detection score amounts to a weighted sum of either 1500 or

2000 feature values. The features themselves are essentially just pixels in mul-

tiresolution histogram images derived from the original word or document

10

Input: Training vectors v1, v2, ...vN each representing one character image
and consisting of F = 2830 HoG features, and target class indicator vectors
z1, z2, ...zN where zc

i = 1 if vi represents the cth character class, else zc
i = −1.

Output: Classifier function H(v) where Hc(vi) → ∞ if vi represents the cth
character, else Hc(vi)→ −∞.
(1) Set weights wc

i = 1 and indicators Hc
i = 0, for i = 1..N , c = 1..C.

(2) Repeat for r = 1, 2, ...R
(a) Identify a classifier function hr(v) based upon the single feature fr,

and a soft threshold θr applied over some subset Sr ⊂ {1, 2, ...C} of
the C character classes:

hc
r(v) =

arδ̃(v
fr , θr) + br : c ∈ Sr

kc
r : c /∈ Sr

(2)

Here Sr, fr, θr, ar, br, and kc are all chosen so as to minimize the
weighted squared error of hr(v) compared to the true indicator zi.

Jwse =
C
∑

c=1

N
∑

i=1

wc
i (z

c
i − hc

r(vi))
2 (3)

For a chosen Sr, fr, and θr, the optimal values for ar, br and kc
r may

be computed via the equations below.

br =

∑

c

∑

i w
c
iz

c
i

∑

c

∑

i w
c
i δ̃

2 −∑c

∑

i w
c
i δ̃
∑

c

∑

i w
c
iz

c
i δ̃

∑

c

∑

i w
c
i

∑

c

∑

i w
c
i δ̃

2 −∑c

∑

i w
c
i δ̃
∑

c

∑

i w
c
i δ̃

(4)

ar =

∑

c

∑

i w
c
iz

c
i δ̃ − b

∑

c

∑

i w
c
i δ̃

∑

c

∑

i w
c
i δ̃

2
(5)

kc
r =

∑

i w
c
iz

c
i

∑

i w
c
i

(6)

Here
∑

c means
∑

c∈Sr
, and

∑

i means
∑N

i=1, while δ̃ is δ̃(vfr , θr).
Equations 4-6 arise from substituting Equation 2 into Equation 3 and
finding the roots of the differential. These differ from the formulation
of Torralba et al. because of our use of soft thresholds, as given in
Equation 1.

(b) Update Hc
i ← Hc

i + hc
r(vi)

(c) Update wc
i ← wc

ie
−zc

i
hc

r(vi)

(3) Set H(v) =
∑R

r=1 hr(v)

Fig. 2. Joint boosting algorithm as applied to train a character classifier/detector.
For motivation, algorithmic efficiencies, and further details see Torralba et al. [12].

11

image, as outlined above in Section 2.2.

2.4 Character Detection

The boosting algorithm generates a detector/classifier that can evaluate each

point in an image and produce a set of detection scores Hc(v(x,y)) (subse-

quently denoted Bc(x, y) for notational clarity) where positive values indicate

the presence of character class c. In practice, due to ambiguities in the writ-

ten characters and imperfections in the detector, not all target characters will

register positive scores. Thus the detection threshold is set somewhat lower

(-5 in the experiments) to avoid the problem of false negatives. Naturally this

raises the rate of false positives, but these can usually be dealt with in the

inference stage because the words they can form tend to be improbable in

most cases. Points in the immediate vicinity of a strong detection may also

exhibit scores over the detection threshold, but should not be recognized as

independent detections. Thus only locally maximal scores are considered as

potential detections.

If necessary, the character detector can search all points of an entire document.

However, previous work on the GW test set used in the experiments assumes

accurate word segmentation and baseline detection [3,8]. Under these condi-

tions detection should be necessary only at the series of points situated along

the midline of each word image. In practice subtle inconsistencies in baseline

location can cause detection errors with this approach by causing the detector

to look too high or too low. Experiments performed with midline-only search

are designated narrow in Section 4 below. Additional experiments designated

broad apply the detector over a vertical range up to two pixels above and be-

12

low the nominal midline, taking the maximal score over this range to account

for possible flaws in the midline location.

3 Hidden Markov Models for Word Recognition

This section describes an HMM to recognize a sequence of characters of fixed

length given the character detection results. Since the actual length of any

target word is unknown, as described below a set or ensemble of such HMMs

will be used, one for each possible word length. Because the reader may not

find it obvious why a single traditional HMM will not suffice, a brief discussion

of the ensemble’s motivation follows.

HMMs offer a principled way to find a sequence with maximum posterior prob-

ability. However, standard HMM formulations whose states correspond to fixed

or regular spatial positions have difficulty accounting for varying character sep-

arations without introducing a very large state space. The technique described

here avoids this issue by using model states corresponding to word characters,

which generate observations (i.e., detections) at positions that may vary ac-

cording to a spatial probability distribution. HMM solutions with unusual

spatial layout thus will have low probability, even if they appear likely with

respect to character sequence and appearance. Using an ensemble of HMMs

imposes little additional cost, since dynamic programming efficiently evaluates

the maximum probability solution to all HMM models in the ensemble.

Below appears a discussion of the form of HMM used, followed by a formula-

tion of the necessary probabilities. The section continues by considering how

to extract predictions from an ensemble of HMMs. Finally, it addresses esti-

mation of the spatial statistics that are crucial for successful inference, via a

13

novel modeling approach.

3.1 HMM Framework

The HMMs used herein explicitly combine information about character tran-

sition, character visual appearance, and horizontal spacing of characters. The

HMM for word length m has m states (plus implicit states for start and end of

word). Each regular state generates a corresponding detection, and thus the

character detector output constrains and informs the hidden state probabil-

ities. Furthermore, the detections for any HMM sequence are constrained to

appear in order from left to right. Transitions between states correspond to

character transitions, with estimated probability based on spacing and char-

acter sequence statistics derived from a transcribed training corpus. For each

length of HMM, the Viterbi algorithm determines an optimal sequence with

maximum posterior probability, and thus the ensemble of HMMs produces one

optimal sequence for each length. The globally optimal sequence with correct

length is found by dividing the probability of each sequence by its length m

and selecting the largest.

To be more specific, let D = 〈d1, d2, . . . , dn〉 represent the sequence of candi-

date detections obtained in the detection step, where n is the total number of

detections over the threshold for a given word image. Each element dk in the

detection sequence is denoted by a triple (ck, φk, xk), where xk is the cartesian

coordinate of the k-th detection, ck the character and φk the detection score

Bck
(xk) for detecting ck at that position. Since false positives may exist in the

candidate detection sequence, the length m of the genuine word is taken as an

integer within [0, n], i.e. 0 ≤ m ≤ n. 0 corresponds to the extreme case where

14

Fig. 3. Two possible configurations of an HMM with length equal to 7, showing
hidden states and (illustrative) corresponding detection points, which vary accord-
ing to the hidden state values. The left image depicts “letters”, a high probability
configuration. The right image depicts “Abutvsr”, a configuration with low proba-
bility due to unusual letter transitions, irregular spacing, and use of low confidence
detections.

all detections are false positives. For each possible length m of a possible latent

word, the algorithm builds an HMM consisting of m state nodes, each of which

generates the observation at a particular position of the detection sequence.

We represent the state sequence of the HMM as S = 〈s1, s2, . . . , sm〉, where

each state si in the HMM is an integral index to a position in the candidate

detection sequence. The observation sequence O = 〈o1, o2, . . . , om〉 denotes

the detection triples generated by each of the state nodes. For example, if

si = 10 then oi is the triple extracted at the 10-th detection position from the

word image, (c10, φ10, x10). The HMM estimates the joint probability of the

observation sequence and the hidden position sequence P (O, S) as:

P (O, S) =
m
∏

i=1

P (si|si−1)P (oi|si) (7)

where P (si|si−1) is the transition probability indicating the possibility of tran-

sition from one position si−1 to another si in the detection sequence, and

P (oi|si) the probability of generating the feature vector oi from the si-th pos-

sible detection. Figure 3 shows diagrams of an HMM with length equal to 7.

Inference in the HMM requires requires finding the S̃ maximizing P (O, S),

15

i.e.:

S̃ = arg max
S

P (O, S) (8)

3.2 Probability Estimation: Generative Probabilities

The generative probability P (oi|si) in this model is the probability of im-

age feature set oi given a true detection at the si-th detection position. The

scores Bc(x, y) from the output of the boosting detector need to be mapped

to probabilities.

Empirically, direct conversion of the score φsi
reported by the letter detec-

tor yields an effective estimates of P (oi|si). The probability is taken as the

exponential of the score, times a constant β small enough to ensure that

P (oi|si) << 1 (see Equation 9). The Viterbi algorithm computes probabilities

using Equation 7. By taking the logarithm of both sides in Equation 7 it can

be seen that a constant mβ is added to all character chains of the same length

and hence this does not affect the output of the Viterbi algorithm (which

maximizes likelihood). In the final step when chains of different lengths are

compared, the scores are divided by the length m and hence the additional

term is the same for all chains. That is, the choice of β does not change

the result. Experiments show that this approach works well. Effectively, the

boosted scores are treated as logarithms of the generative probabilities, up to

a constant. This is somewhat surprising since the literature indicates that the

output scores of classifiers such as support vector machines [27] and AdaBoost

[28] are not necessarily good probability measures.

P (oi|si) = β exp φsi
(9)

16

3.3 Probability Estimation: Transition Probabilities

The transition probability P (si|si−1) measures the possibility that the char-

acter detected at dsi
follows the character at dsi−1

consecutively in the word

image under consideration. (Note that si and si−1 are consecutive Markov

states, but do not necessarily refer to consecutive detections since false detec-

tions may occur between them.) This probability is determined by two differ-

ent components of the detections: the candidate characters and the Cartesian

coordinates/positions of the detection.

The candidate character transition probability models the statistical depen-

dency of characters, i.e. the conditional probability of one character occurring

given the previous character(s): P (csi
|csi−1

). These numbers can be estimated

using bigram (or trigram) statistics observed in a training corpus of tran-

scribed text. Standard backoff estimation with 10% holdout data provides

smoothed (non-zero) probability estimates for patterns not observed in train-

ing [29].

The position transition models the expected horizontal separation of different

characters in word images. This probability penalizes unusual (too large or

too small) separations of the two candidate detections. Section 3.5 describes a

technique to estimate the expected separation µsisi−1
between two characters

csi
and csi−1

, and likewise the expected deviation σsisi−1
. With these numbers

one can model the positional term as a Gaussian function of the separations:

P (xsi
|xsi−1

) =
1√

2πσsisi−1

exp

(

−((xsi
− xsi−1

)− µsisi−1
)2

2σ2
sisi−1

)

(10)

The full transition probability P (si|si−1) is simply a weighted combination of

17

the character and position transitions:

P (si|si−1) = λP (csi
|csi−1

) + (1− λ)P (xsi
|xsi−1

) (11)

where λ determines the weights for the two components. The value of λ may

be estimated from a validation set. For simplicity, we have used a predefined

value λ = 2/3 in our experiments, which seems to work well across all the

experiments.

3.4 Decoding the Most Likely Word

The Viterbi algorithm is used to determine the most likely state sequence S̃ of

an HMM. The log likelihood of decoding the i-th state as the k-th candidate

detection is denoted γk
i and computed in the standard manner.

γk
i = φk +

k−1
max
j=0

[γj
i−1 + log(P (k|j))] (12)

where the latent constraint j ≤ k ensures that the decoding never traverses the

detection sequence backwards. (β is omitted here for clarity.) Since we build

a separate HMM for each possible length (0 ≤ m ≤ n) of the real word, after

the Viterbi decoding we get the most likely word labels of n different lengths.

We denote these most likely words as Wm and the corresponding likelihoods

as γm. Note that although we define a separate HMM for each possible word

length, the Viterbi scores γk
m calculated for the length m sequence can be

reused to compute γk
m+1 for the length m + 1 sequence, achieving significant

computational savings. The entire computation corresponds to filling in the

table shown in Figure 4.

18

The inference complexity scales as the cube of the number of detections. This

has proved manageable in practice, with most words producing on the order

of 100 or fewer detections, sometimes far less. However, the computation can

be made quadratic if necessary with little change in the result by computing

the maximum in Equation 12 over the most recent h states only, where h is

large enough that only long-distance, low probability transitions are ignored.

3.4.1 Choosing a Word Length

Viterbi identifies the best character sequence for each possible length up to

n. Comparing γm between sequences of different length may be misleading

since longer sequences include more terms and hence may potentially have

a bias toward lower score. All other things being equal, a word containing

more letters may be expected to have lower likelihood than a shorter word

since more letters offer more possible combinations overall. The best pick Wm̃

therefore normalizes the likelihood by word length.

m̃ = arg max
m

γm

m
(13)

Figure 5 shows how γ̂m = γm/m varies with word length m for several sample

words. Word length errors remain a challenge: the experiments show that

label accuracy could improve by up to ten percentage points if the length

were always predicted correctly.

19

Fig. 4. Dynamic programming table. Rows correspond to candidate detections,
sorted by their x coordinates. Columns correspond to possible placements in the
output word label. Shaded boxes represent impossible configurations (i.e., the
first/leftmost detection cannot be the second character in the word). Values are
filled in by columns from left to right. The partial score γk

j entered in the table
for a particular detection j in a particular word position k is the maximal value
computed via Equation 12 over all possible sequences that could precede j at k.
Arrows show the three possible immediate predecessors for one such computation.

Fig. 5. Mean score per character transition of the best label at various lengths for
two sample words. The prediction for the first word is “Letters” and for the second
is “Instreictions”. In the latter case, the incorrect 13-letter prediction has higher γ̂m

than the correct 12-letter prediction.

3.5 Estimating Character Positions and Separation Statistics

To gather statistics on expected character separations for use in Equation 10,

we first must know the position of the detection point for a sufficiently long

sequence of characters in the training sample. Fortunately, the positions can

be automatically estimated with sufficient reliability using the training tran-

script and a variant of the inference method just described. Access to the

correct transcription simplifies the inference considerably and makes accurate

20

Fig. 6. Letter locations inferred from transcripts for several words. Dynamic pro-
gramming scores are 20.2, 13.6 and -14.8 respectively. The low score of the third
word reflects a location failure, visible in the second half of the word. Note that
’Williamsburgh’ still has positive score despite the large separation between the
sixth and seventh letters.

location tractable. For these purposes, P (csi
|csi−1

) must be zero for all tran-

sitions not conforming to the transcript, and one for the correct transitions.

Since a word only contains a small handful of characters, all local detection

peaks can be considered as candidate locations regardless of the usual thresh-

old. To bootstrap the inference, a heuristic estimate suffices for µsisi−1
, namely

the width of the word divided by the number of characters; likewise σsisi−1
is

set ad hoc to 30% of this value. With these changes, the Viterbi algorithm can

find a sequence of character detections matching the transcript that represents

the joint most likely character positions. Although there is no ground truth

available for this task to give a numeric assessment, visual inspection of the

results suggests a low error rate. Furthermore, errors are typically associated

with low posterior probability, allowing for easy detection (see Figure 6); in

practice, only words with γm > 5m are used.

Estimated character positions still do not directly provide the expected sepa-

ration µij between two arbitrary characters ci and cj, because not all sequences

will be observed in the training data. As with character bigrams, filling gaps

in the observations requires some sort of smoothing. The following model pro-

vides the necessary mechanism.

Suppose that each character ci has an intrinsic width wi independent of its

neighbors, and that the separation between two neighboring characters ci and

cj is thus µij = µji = (wi +wj)/2. With n + 2 characters (including SOW and

21

EOW) there are n + 2 widths to estimate, but typically many more observed

mean values, denoted µ∗
ij. This gives rise to an overconstrained linear system,

with a least-squares solution to wi. Because the character position estimates

do contain occasional mistakes, µ∗
ij conservatively uses the trim mean of the

separations of all observed instances of cicj or cjci, i.e., throwing out the

highest and lowest 10% of the data and computing the mean on the middle

80%. 2

The character widths wi give estimates for all mean separations µij. A heuristic

threshold then smooths the data: For sequences observed more than 5 times,

the observed mean separation µ∗
ij is used directly; otherwise an interpolation

with the character width estimates is used instead. Let Nij represent the

number of observations of cicj or cjci in the training transcript.

µij =

Nij ≥ 5 : µ∗
ij

Nij < 5 : Nij

5
µ∗

ij +
(

1− Nij

5

)

wi+wj

2

(14)

The deviation also derives from a heuristic mixture of interpolation and direct

measurement, except that more observations are required before the direct

measurement is trusted.

2 Although logically implausible, with extremely sparse and corrupt data the least-
squares solution can give a negative result for some wi. In these rare cases the value
is set arbitrarily to 0.

22

σij =

Nij ≥ 10 : σ∗
ij

5 ≤ Nij < 10 : Nij−5

5
σ∗

ij + 10−Nij

5
σ̄∗

Nij < 5 : σ̄∗

(15)

Here σ̄∗ refers to the deviation between the model µ and all the observed

character separations regardless of class, computed robustly by dividing the

interquartile separation by 1.35. σ∗
ij derives similarly from the interquartile

separation observed for each particular transition.

4 Experiments

The experiments presented below employ handwritten corpora that have been

studied by other researchers. Initial testing of the system was carried out

using the George Washington corpus. The identical system was then applied

to excerpts from Terence’s Comedies as a test of generality and for purposes

of comparison with additional published research.

4.1 George Washington’s Letters

The George Washington corpus (GW20) comprises twenty pages of correspon-

dence from the letters of George Washington. These are written in longhand

script by several of Washington’s secretaries, so they represent multiple hand-

writing styles. These experiments use the same word image segmentations as

previous work [8]. The distribution of word lengths appears in Figure 7.

23

Fig. 7. Distribution of word lengths in the GW20 corpus.

Previous experiments with the GW20 corpus [7,3,8,30] have employed a 20-fold

cross-validation framework, with each page serving as a fold and the remaining

19 pages providing training word labels. Most prior work used holistic word

recognition, and thus focused on the recognition accuracy for known words,

since their out-of-vocabulary (OOV) recognition rate is zero. Adamek et al.

report a top recognition rate of 83% for known words, but this represents

only 69% of the entire sample including OOV words [7]. Since character-based

recognition can identify both known and unknown words, the latter number

makes the best figure for comparison.

The joint boosting process builds a letter detector as described in Section 2.

Only two detectors are trained: one from the even pages and one from the odd

pages. For testing any given page, the detector built without seeing that page

is employed. There are sixty character classes total, including all lowercase

letters, numerals, most uppercase letters, and one instance of the British pound

symbol £.

Tables 1 and 2 summarize the results under several experimental conditions.

The first column of numbers in Table 1 shows the percentage of test examples

for which the inference model’s top character sequence matches the actual

word tag. The second column of numbers shows the percentage of exclusively

OOV words labeled correctly. The OOV words are more difficult to label

24

Table 1
Accuracy of predictions from the character sequencer: percentage of words recog-
nized correctly. First column of numbers is the overall match rate; second considers
only words not seen during training (out-of-vocabulary words). Third and fourth
columns give equivalent results if true word lengths were somehow known a priori.
Final column gives character accuracy rate. Deviations are computed over the 20
folds of the test set.

Std. +Len. Char.

Experiment [All] [OOV] [All] [OOV] Acc.

T32 bigram narrow 30± 7 12± 7 36± 7 17± 10 71± 4

T32 bigram broad 40± 8 18± 9 48± 8 26± 13 77± 4

T128 bigram narrow 53± 7 27± 10 63± 6 39± 10 81± 3

T128 bigram broad 54± 7 29± 10 64± 6 40± 9 82± 3

T128 trigram broad 62± 7 34± 11 70± 6 43± 11 86± 3

because they include fewer short easy words. The third column shows the per-

centage of examples for which the most likely character sequence of the correct

length matches the actual word tag. This number is a “cheating” experiment

since it relies on knowing the actual word length, but the better performance

here indicates at least that it may be worthwhile developing alternate meth-

ods to determine the correct word length. The fourth column shows the same

figure for OOV words only. The last column shows the character error rate,

computed from the edit distance between the prediction and the correct word

divided by the total correct number of characters. In general, the accuracy for

all categories improves with the number of training samples and the sophisti-

cation of the language model.

Table 2 offers numbers more directly comparable to previous work in holistic

word techniques. Many of the character sequencer’s erroneous predictions are

not words at all, but are non-words similar to the correct label. The results in

this table show the recognition rate with predictions constrained to the lexicon

seen in the training set. If the unconstrained prediction from the character

25

sequencer is not in the lexicon, then a post-analysis constructs a list of lexicon

words closest in edit distance to the predicted word. The word from this list

with the highest γ̂m becomes the new prediction.

The list of candidates to check is generated via character insertion, deletion,

and substitution operations, as well as swapping two characters for one or

one for two. The latter two transformations are included due to the frequency

of mistakes such as ’ii’ in place of ’u’ and vice versa. Restricting the word

predictions to the training lexicon increases the percentage of correct labels

significantly. On the other hand, as with prior work the chance of correctly

labeling an OOV word goes to zero. A hybrid method described in Section 4.2

below overcomes this by choosing either the original prediction or the lexicon-

constrained word depending on their relative score. This maintains the ac-

curacy boost on known words afforded by the lexicon constraints while still

allowing recognition of unfamiliar words when they are unambiguous enough.

Results for this methods appear in the bottom two rows of Table 2.

4.2 Hybrid Open/Constrained Recognition

The word recognition rate using pure letter detection consistently lags behind

the score with a constrained lexicon. Unfortunately, using only a constrained

lexicon precludes correct labeling of any OOV terms encountered. For certain

applications, such as document retrieval, these OOV words may be particularly

interesting precisely due to their novelty and rarity.

Figure 8 displays the differences between raw recognition and the lexicon-

constrained approach. Each point represents a word, with the position taken

from the length-normalized likelihood γ̂m of the top prediction of each method.

26

Table 2
Accuracy with word label predictions constrained to vocabulary in the training
lexicon. Results appear for in-lexicon words alone, for the entire word set, and (on
the hybrid algorithm) for OOV words. Deviations are computed over the 20 folds
of the test set.

Experiment Lexicon All OOV Only

T32 bigram narrow 63± 7 53± 8 N/A

T32 bigram broad 74± 7 62± 7 N/A

T128 bigram narrow 77± 5 69± 5 N/A

T128 bigram broad 83± 4 70± 6 N/A

T128 trigram broad 84± 4 71± 6 N/A

Feng [30] 72.3 61.1 N/A

Adamek, et al. [7] 83 69 N/A

Hybrid bigram 82± 4 72± 5 17± 8

Hybrid trigram 84± 4 76± 6 32± 10

The shaded area, found by Gaussian mixture modeling on a holdout set, de-

notes a region wherein the unconstrained prediction performs better. The

characteristics of the identified area support the intuition that one should

prefer the unconstrained result precisely when it has sufficiently high score.

Using the holdout-trained mixture model to determine whether the raw or

lexicon-constrained label should be chosen results in a highly successful hybrid

algorithm. It correctly recognizes 32% of OOV words, 84% of lexicon words,

and 76% of words over all, better than the previous best of 69% on this task

[7]. The ability to recognize some OOV words while maintaining a high overall

recognition rate distinguishes the character-based approach presented here.

Note that the 32% rate for the hybrid algorithm only slightly lags the 34%

rate for unconstrained recognition. As expected the OOV words recognized

tend to carry content, with a median length of six characters.

27

Fig. 8. Differences in scores between the raw and lexicon-constrained approaches.
Circles show words only tagged correctly by the raw method, and X’s show words
only tagged correctly by the lexicon-constrained method. Light gray indicates areas
where the former predominates, according to a Gaussian mixture model. For clarity,
the figure omits words where both methods agree.

4.3 Latin Results

Edwards et al.[9,10] present recognition results for a handwritten Latin manuscript,

Terence’s Comedies. This document contrasts sharply with GW20 in style and

language. As a test of generality, the recognition system described above is

retrained for the Latin text, without changing parameters. The original high-

resolution document images are subsampled to approximate the letter size

in the GW20 writing, but otherwise the processing is identical. These experi-

ments are performed with only two folds, using the alternating recto and verso

pages respectively.

The results appear in Table 3, for pages 5-47 of the Comedies. The basic

system generalizes well to the new form of handwriting, achieving higher ac-

curacy than prior work using similar data. 3 Only the constrained-vocabulary

3 Because the ground truth used by Edwards et al. is not available, a new transcript

28

Table 3
Accuracy of predictions on the Latin manuscript. First two columns show percent
of words correct by the basic system; third and fourth columns show equivalent
results if true word lengths were somehow known a priori. Fifth and sixth columns
show percent of words correct using constrained vocabulary. The final column gives
character error rate over both folds. Results for both even and odd pages are shown.

Std. +Len. Cnstr. Char.

Experiment Rec. Ver. Rec. Ver. Rec. Ver. Acc.

T128 bigram narrow 60 62 71 71 50 53 88.7

T128 trigram narrow 63 63 73 72 51 53 89.4

Edwards et al. [9] N/A N/A N/A N/A N/A N/A 75

approaches do not generalize well. Because Latin includes multiple variant

forms of the same word depending on case and gender, a dictionary based on

simple word matching would require a much larger sample of training text.

This could be addressed through language-aware matching, but the point of

this exercise was to run the system with no changes.

5 Conclusion

This paper has developed a new approach to word recognition based upon un-

restricted character detection followed by efficient inference on an ensemble of

HMMs that vary in length. The character detection represents a new applica-

tion of the joint boosting technique originally developed by Torralba et al. for

finding objects in photographs [12]. To support word recognition in the con-

text of multiple unsegmented and overlapping character detections, the paper

also develops a novel inference framework applicable to noisy segmentation-

free approaches. Inputs to the framework include a model of mean character

was prepared for the experiments performed here. Their result evaluates only 25
pages. Also, they constrain their method to employ just one example per character
as initial training data.

29

separations estimated from sparse data, taken from inferred letter positions in

a training corpus with human-provided transcription. When applied to offline

historic document images of cursive script, the method described here im-

proves on the best previously reported word recognition rates for the GW20

and Latin manuscripts, and demonstrates the ability to recognize words never

seen during training.

The results presented here show great promise, with the possibility for ad-

ditional gains from the application of well-established techniques not yet at-

tempted. For example, incorporation of word-level bigram statistics in other

work improved recognition rates by up to 10% [1], and similar measures could

be applied here. Further effort in assembling a comprehensive and complete

character training set might also yield significant improvement, as would more

accurate choice of the correct word length in the inference model. Finally, ex-

perimenting with other sorts of features besides the histogram of gradients may

turn up feature sets even better suited to character recognition. Exploration

of the possibilities has only begun.

Acknowledgment

Shaolei Feng and R. Manmatha were supported in part by the Center for In-

telligent Information Retrieval and in part by a grant from Google, and all the

authors were supported in part by grant #NSF CNS-0619337. Any opinions,

findings and conclusions or recommendations expressed in this material are

the author(s) and do not necessarily reflect those of the sponsor.

30

References

[1] A. Vinciarelli, S. Bengio, H. Bunke, Offline recognition of unconstrained

handwritten texts using hmms and statistical language models, IEEE Trans.

Pattern Anal. Mach. Intell. 26 (6) (2004) 709–720.

[2] T. M. Rath, R. Manmatha, V. Lavrenko, A search engine for historical

manuscript images, in: 27th Int. ACM SIGIR Conf. on Research and

Development in Information Retrieval, 2004, pp. 369–376.

[3] N. Howe, T. Rath, R. Manmatha, Boosted decision trees for word recognition

in handwritten document retrieval, in: 28th Int. ACM SIGIR Conf. on Research

and Development in Information Retrieval, 2005, pp. 377–383.

[4] R. Plamondon, S. N. Srihari, On-line and off-line handwriting recognition: A

comprehensive survey, IEEE Trans. Pattern Anal. Mach. Intell. 22 (1) (2000)

63–84.

[5] A. Vinciarelli, A survey on off-line cursive script recognition, Pattern Recognit.

35 (7) (2002) 1433–1446.

[6] S. Madhvanath, V. Govindaraju, The role of holistic paradigms in handwritten

word recognition, IEEE Trans. Pattern Anal. Mach. Intell. 23 (2) (2001) 149–

164.

[7] T. Adamek, N. E. O’Connor, A. F. Smeaton, Word matching using single

closed contours for indexing handwritten historical documents, Int. J. Doc.

Anal. Recogn. 9 (2007) 153–165.

[8] V. Lavrenko, T. Rath, R. Manmatha, Holistic word recognition for handwritten

historical documents, in: Proc. IEEE Wkshp. on Document and Image Analysis

for Libraries, 2004, pp. 278–287.

[9] J. Edwards, Y. W. Teh, D. Forsyth, R. Bock, M. Maire, G. Vesom, Making

31

latin manuscripts searchable using gHMM’s, in: Advances in Neural Information

Processing Systems 17, 2005, pp. 385–392.

[10] J. Edwards, D. Forsyth, Searching for character models, in: Advances in Neural

Information Processing Systems 18, 2006, pp. 331–338.

[11] M. Decerbo, P. Natarajan, R. Prasad, E. MacRostie, A. Ravindran,

Performance improvements to the bbn byblos ocr system, in: Proc. 8th Int.

Conf. on Document Analysis and Recognition, 2005, pp. 411–415.

[12] A. Torralba, K. P. Murphy, W. T. Freeman, Sharing visual features for

multiclass and multiview object detection, IEEE Trans. Pattern Anal. Mach.

Intell. 29 (5) (2007) 854–869.

[13] U.-V. Marti, H. Bunke, Using a statistical language model to improve the

performance of an hmm-based cursive handwriting recognition system, Int. J.

Pattern Recognit. Artif. Intell. 15 (1) (2001) 65–90.

[14] T. Crackel, Private communication.

[15] T. Rath, R. Manmatha, Word spotting for historical documents, Int. J. Doc.

Anal. Recogn. 9 (2-4) (2007) 139–152.

[16] S. Feng, R. Manmatha, Exploring the use of conditional random field models

and hmms for historical handwritten document recognition, in: Proc. 2nd IEEE

Int. Conf. on Document Image Analysis for Libraries, 2006, pp. 30–37.

[17] G. Mori, J. Malik, Recognizing objects in adversarial clutter: Breaking a visual

captcha, in: Computer Vision and Pattern Recognition, Vol. 1, 2003, pp. 134–

141.

[18] I. Bar-Yosef, I. Beckman, K. Kedem, Binarization, character extraction, and

writer identification of historical Hebrew calligraphy documents, Int. J. Doc.

Anal. Recogn. 9 (2007) 89–99.

32

[19] K. Ntzios, B. Gatos, I. Pratikakis, T. Konidaris, An old greek handwritten

OCR system based on an efficient segmentation-free approach, Int. J. Doc.

Anal. Recogn. 9 (2007) 179–192.

[20] S. Impedovo, Hidden markov models in handwriting recognition, in:

S. Impedovo (Ed.), Fundamentals in Handwriting Recognition, 1994, pp. 7–39.

[21] S. Feng, R. Manmatha, A hierarchical, hmm-based automatic evaluation of ocr

accuracy for a digital library of books, in: ACM/IEEE-CS Joint Conf. on Digital

Libraries (JCDL’06), 2006, pp. 109–118.

[22] J. He, D. M. Q. Do, A. C. Downton, A comparison of binarization methods

for historical archive documents, in: 8th Int. Conf. on Document Analysis and

Recognition, Seoul, Korea, 2005, pp. 538–542.

[23] E. Learned-Miller, Data-driven image models through continuous joint

alignment, IEEE Trans. Pattern Anal. Mach. Intell. 28 (2) (2006) 236–250.

[24] N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in:

Computer Vision and Pattern Recognition, 2005, pp. 886–893.

[25] A. Vedaldi, P. Favaro, E. Grisan, Boosting invariance and efficiency in

supervised learning, in: Int. Conf. on Computer Vision, 2007, pp. 1–8.

[26] L. Wolf, I. Martin, Regularization through feature knock out, Tech. Rep. AIM-

2004-025, MIT (2004).

[27] C. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

[28] D. Mease, A. J. Wyner, A. Buja, Boosted classification trees and class

probability/quantile estimation, J. Machine Learning Research 8 (2007) 409–

439.

[29] F. Jelinek, Statistical Methods for Speech Recognition, MIT Press, Cambridge,

MA, 1997.

33

[30] S. Feng, Statistical models for text query-based image retrieval, Ph.D. thesis,

Uinversity of Massachusetts, Amherst (May 2008).

[31] J. T. Favata, G. Srikantan, S. N. Srihari, Handprinted Character/Digit

Recognition Using a Multiple Feature/Resolution Philosophy, in: Int. Wkshp.

on Frontiers in Handwriting Recognition (1994) 57–66.

[32] J. A. Rodriguez, F. Perronin, Local Gradient Features for Word Spotting

in Unconstrained Handwritten Documents, in: Int. Conf. on Frontiers in

Handwriting Recognition (2008). .

34

