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Abstract—Keyword spotting refers to the process of retrieving
all instances of a given keyword from a document. In the
present paper, a novel keyword spotting method for handwritten
documents is described. It is derived from a neural network
based system for unconstrained handwriting recognition. As such
it performs template-free spotting, i.e. it is not necessary for a
keyword to appear in the training set. The keyword spotting is
done using a modification of the CTC Token Passing algorithm
in conjunction with a recurrent neural network. We demonstrate
that the proposed systems outperforms not only a classical
dynamic time warping based approach but also a modern
keyword spotting system, based on hidden Markov models.
Furthermore, we analyze the performance of the underlying
neural networks when using them in a recognition task followed
by keyword spotting on the produced transcription. We point out
the advantages of keyword spotting when compared to classic text
line recognition.

I. INTRODUCTION

The automatic recognition of handwritten text – such as

letters, manuscripts or entire books – has been a focus of in-

tensive research for several decades [1], [2]. Yet the problem is

far from being solved. Particularly in the field of unconstrained

handwriting recognition where the writing styles of various

writers must be dealt with, severe difficulties are encountered.

Making handwritten texts available for searching and brows-

ing is of tremendous value. For example, one might be

interested in finding all occurrences of the word “complain”

in the letters sent to a company [3]. As another example,

libraries all over the world store huge numbers of handwritten

books that are of crucial importance for preserving the world’s

cultural heritage. Making these books available for searching

and browsing would greatly help researchers and the public

alike. Certain efforts have already been put into word spotting

for historical data [4], [5]. Another related application is the

segmentation of images of historical documents into mean-

ingful regions, which can be improved with keyword spotting.

In [6] the keyword “Fig.” is spotted in the images to help

identifying figures and their corresponding captions. Finally,

it is worth mentioning that Google and Yahoo have announced

their intention to make handwritten books accessible through

their search engines [7]. In this context, keyword spotting will

be a valuable tool for users browsing the contents of these

books.

Transcribing the entire text of a handwritten document for

searching is not only inefficient as far as computational costs

are concerned, but it may also result in poor performance,

since mis-recognized words cannot be found. Therefore, tech-

niques especially designed for the task of keyword spotting

have been developed. Next, we review related work from this

area.

A. Related Work

1) Word based Keyword Spotting: The task of keyword

spotting as detecting a word or a phrase in an image has been

initially proposed in [8] for printed text and a few years later

in [9] for handwritten text. The first methods consider single

word images and adopted approaches common in optical

character recognition (OCR). They make use of pixel wise

comparison of the query and the test image (or selected parts of

it, called zones of interest (ZOI)) or evaluate a global distance

value between the two pixel sets. Notable works in this domain

include XOR comparison [10], Euclidean distance [11], Scott

and Longuet-Higgins distance [9], Hausdorff distance of con-

nected components [12] and the sum of Euclidean distances

of corresponding key points (corner features) [13].

More complex, holistic features are the moments of the

black pixels, investigated in [14]. In [15] and [16], several

binary ’Gradient, Structural and Convexity’ (GSC) features

are explored. In [17] different pixel-wise gradient matchings

are compared and the authors propose an elastic matching

procedure. The authors in [18] discuss discrete cosine trans-

formation of the contour to obtain a feature vector, while

the use of Gabor features is investigated in [19]. Holistic

word features in conjunction with a probabilistic annotation

model are proposed in [20]. This system allows one to spot

arbitrary words. However, problems are reported for keywords

not occurring in the training set.

The most common local approach is to represent a word as

a sequence of features, extracted via a sliding window. Com-

paring such sequences using dynamic time warping (DTW) is

one of the most commonly used word spotting methods [21],

[22] and still widely used [4]. A comparison of DTW with

pixel-wise comparisons is given in [11] and a comparison of

(GSC) based spotting with DTW in [15], [23]. A proposal of
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using sequential data in conjunction with a holistic approach

for keyword spotting in the speech recognition domain is made

in [24] where a sequence is transformed into a vector space

and then classified using kernel machines.

2) Line based Keyword Spotting: All former approaches

require the text in an image to be segmented into individ-

ual words before keyword spotting takes place. A different

scenario is given if the document is segmented into lines

only. A DTW based system that automatically selects keyword

candidates in a handwritten text line is described in [25]. For

general systems that rely on an automatic segmentation, a

method is proposed in [26] that also takes the probability of

a correct segmentation into account.

Using a handwritten text line recognition system for key-

word spotting circumvents the segmentation problem. Tech-

niques based on handwriting recognition (HWR) have become

fairly popular recently, especially using Hidden Markov Mod-

els (HMM) [27], [28], [29], [30]. In [8] pseudo-2D HMMs

have been investigated and [31] proposes generalized HMMs

where more than one emission in each hidden state is allowed.

Unsupervised adaptation of whole word HMMs to a specific

writer is proposed in [32] and [33] discusses the usage of

the Fisher Kernel of the HMM to estimate a good confidence

measure.

Not only HMMs but also Neural Networks (NN) have found

their way into keyword spotting with so called bidirectional

long short-term memory (BLSTM) NN [34], [35], similarly

to the system we propose in this paper. The mentioned work,

however, deals only with keyword spotting in speech. Fur-

thermore, one node in the output layer of the neural network

symbolizes one keyword and is triggered when the word

occurs in the input data. Therefore, the number of keywords to

be spotted are limited, the word has to be known beforehand,

and the keyword must occur in the training set.

3) Document based Keyword Spotting: To work on com-

pletely unsegmented pages of text, a system can either include

a segmentation step [14] or take a segmentation-free approach.

In [36] a codebook of shapes is used to create a compressed

version of each document. A keyword search is then done

using the stored shape codebook entries. Finally, a common

approach to segmentation-free word spotting is to consider the

task as an image retrieval tasks for an input shape representing

the word image [37], [38], [39].

B. Contribution

In this paper we present a keyword spotting method for

handwritten text based on BLSTM Neural Networks. The

application of these networks in conjunction with the so-

called CTC Token Passing algorithm to produce a transcription

of handwritten text was presented in [40]. In this paper, we

propose a new version of the CTC Token Passing algorithm

and apply it to a different task, namely keyword spotting. To

the knowledge of the authors, this is the first time that neural

networks and CTC Token Passing algorithm are used for this

task. With our system, fast and reliable keyword spotting can

be performed without the need of neither transcribing the text

line nor segmenting it into individual words.

The imposed changes and the different underlying task have

further implications on selecting single neural networks. The

network having the lowest word error rate when performing

recognition is not necessarily the best network for keyword

spotting. A system which optimizes word error rates has to

do well at recognizing the most frequent words but may do

poorly at recognizing function words which are less frequent.

According to Zipf’s Law, the capability of recognizing stop

words has a huge impact on the word error rate, while in

keyword spotting stop words do not matter. In fact, they are

excluded in most experiments. A keyword spotting system

must perform equally well on every search term, even rare

words and names that might or might not occur in a dictionary

or language model. Thus, a system optimized on the word error

rate may not be as good for search as one build directly for

this task [41]. In text retrieval it has been shown that training

a model by maximizing the likelihood of the training data

according to the model does not lead to the best results [42].

A preliminary version of the system described in this paper

has been presented in [43], [44]. The current paper provides

significant extensions with respect to the underlying method-

ology and the experimental evaluation. Firstly, we demonstrate

the system’s applicability to historical data as well as modern

handwriting. We use two different historical data sets. One data

set consists of letters written by George Washington associates,

a well known database for the task of keyword spotting [10],

[13], [17], [18], [22], [38]. Since the writing is done in cursive

early modern English, we investigated the performance of the

proposed system when it is trained on modern handwriting.

The second historical data set is an epic poem in middle high

German, written in the 13th century [45].

As the second extension over [43], [44], an extensive

comparison with several reference systems is presented. On

the one hand, a common DTW algorithm as well as a modern

HMM-based algorithm is used for comparison. On the other

hand, a handwriting recognition system is used that produces

an ASCII output on which the keyword search is done.

Finally, a brief discussion is given about keyword spotting

as a research area independent of handwriting recognition,

backed up with empirical arguments about the correlation

of the recognition performance versus the keyword spotting

performance of individual systems. The question whether

keyword spotting is easier and faster is answered in Section

IV-E in the affirmative.

The rest of the paper is structured as follows. In Section

II, the proposed keyword spotting system is introduced in

detail. The reference systems are presented in Section III.

The experimental evaluation is described in Section IV and

conclusions are drawn in Section V.

II. WORD SPOTTING USING BLSTM

Keyword spotting refers to the process of retrieving all

instances of a given word from a document. In this paper,

we focus on handwritten documents, such as letters, memo-

randums, or manuscripts. Without transcribing the data, a user

should still be able to search for any possible word, just like

using a search engine. How the result of such a search may
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(a) Returned log Likelihood: -1.7125

(b) Returned log Likelihood: -8.4097

(c) Returned log Likelihood: -9.0727

(d) Returned log Likelihood: -11.0900

(e) Returned log Likelihood: -11.6082

Fig. 1. Search results for the word “found”.

look like can be seen in Fig. 1. Note that the base system just

returns a likelihood of the word being found. If the likelihood

of a keyword occurring in the text line is above a given

threshold, the text line is returned as a positive match along

with the position of the keyword.

A. Preprocessing

In the database used for the experiments described in Sec-

tion IV, all documents are already segmented into individual

text lines. From each line, a sequence of feature vectors is

extracted, which is then submitted to the neural network.

For algorithmic processing, a normalized text line image is

represented by a sequence of N feature vectors x1, . . . , xN

with xi ∈ R
n. This sequence is extracted by a sliding window

moving from the left to the right over the image. At each of the

N positions of the sliding window, n features are extracted.

The sliding window has a width of one pixel. It is moved in

steps of one pixel, i.e., N equals the width of the text line.

From each window n = 9 geometric features are extracted,

three global and six local ones. The global features are the 0th,

1st and 2nd moment of the black pixels’ distribution within

the window. The local features are the position of the top-most

and that of the bottom-most black pixel, the inclination of the

top and bottom contour of the word at the actual window

position, the number of vertical black/white transitions, and

the average gray scale value between the top-most and bottom-

most black pixel. To compute the inclination of the top and

bottom contour, the sliding window to the left of the actual

one is considered. For further details on the feature extraction

step, we refer to [46]. The extracted features are local and

each feature vector represents the data of the text line image

at one position only. There is, however, an indirect influence

between all words of a text line. The preprocessing steps

which are explained in IV-A are globally applied to the entire

text line. Therefore, the way a word is written influences the

modifications applied to the entire text line prior to the feature

extraction.

B. The Proposed System

The keyword spotting system proposed in this paper is based

upon previous work where BLSTM Neural Networks have

been used for the handwriting recognition task [40]. Applying

BLSTM NN to handwriting recognition consists of two parts.

The first part is a preprocessing phase, performed by the neural

network. It maps each position of an input sequence to a vec-

tor, indicating the probability of each character possibly being

written at that position. The second part, called CTC Token

Passing algorithm, takes this sequence of letter probabilities

as well as a dictionary and a language model as its input

and computes a likely sequence of words. For the keyword

spotting task, we leave the first part unchanged but developed

a different postprocessing algorithm specifically for keyword

spotting.

Since the BLSTM NN preprocessing is already explained in

[40] we treat it as a black box in the current paper. We only

give a brief explanation in Section II-C below and refer to

[40] for further details. Understanding the CTC Token Passing

postprocessing upon which our algorithm is founded, however,

is essential. Therefore, we describe the algorithm in full length

in Section II-D.

C. BLSTM Neural Networks

The underlying neural network is a recurrent neural network

with a special architecture. To overcome the vanishing gradient

problem that describes the exponential increase or decay of

information in recurrent connections in a neural network, the

nodes in the hidden layer are replaced by long short-term

memory (LSTM) cells, displayed in Fig. 2. The gates of these

cell are normal nodes and control the flow of information into

and out of each cell. When the input gate is open, the central

node’s value is replaced by the output activation of the net

input node. When the output gate is open, information flows

out into the network and when the forget gate is open, the

cell’s memory is reset to zero.

The network is bidirectional, meaning the text line is

processed from both left-to-right and right-to-left. This is done

because context from both sides of a character is useful to

improve the recognition. The information from two separate

input layers is collected in two separate LSTM layers, respec-

tively, and finally joined in the output layer. This is illustrated

in Fig. 3. The output layer contains one node for each possible

character as well as one additional node, called ε node, which

is activated when no evidence about the presence of any

character can be inferred. The normalization of the output

activations to sum up to 1 results in a vector that can be

interpreted as a character probability vector (Fig. 4).

D. CTC Token Passing Algorithm

The CTC Token Passing algorithm for single words expects

a sequence of letter probabilities of length t as input from

the neural network, together with a word w as a sequence
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Net Output

Output Gate

Input Gate

Net Input

Forget Gate

1.0

Cell

Fig. 2. Gates control the information flow into and out of each LSTM Node.

LSTM Layer LSTM Layer

Output Layer

Fig. 3. An illustration of the mode of operation of the BLSTM Neural
Network. For each position, the output layer sums up the values of the two
hidden LSTM layers.

of ASCII characters. In a dynamic programming fashion, the

best path through the letter probability sequence is computed

that correspond with the letters from the input word w. The

value of that path is then returned as a matching score, i.e. the

probability that the input to the neural network was indeed the

given word.

The pseudo code of the CTC Token Passing algorithm for

single word recognition is given in Algorithm 1. To introduce

the formal notation, let the sequence of letter probabilities be

n and let n(l, k) denote the probability of the letter l to occur

at position k. Furthermore let the word w to be matched be a

sequence of letter w = l1l2 . . . ln.

Fig. 4. The activation level for all nodes in the output layer. The activation
is close to 0 most of the time for normal letters and peaks only at distinct
position. In contrast, the activation level of the ε node is nearly constantly 1.

In a first step, the word w is expanded into a sequence

w′ = εl1εl2 . . . εlnε = c1c2c3 . . . c2n+1 .

Additionally, for every character ci (i = 1, . . . , 2n + 1) and

every position j = 1, . . . , t in the text line, a token ϑ(i, j)
is created. This token holds the probability for character ci

to be present at position j together with the probability of

the best path from the beginning to position j. All tokens are

initialized to 0 except for the tokens for c1 and c2, which

correspond to the first ε symbol and the first character of the

word l1. These are initialized to the value of ε respectively c1

at the first position of the sequence (Lines 3–4).

During the following loop over all input sequence positions

j, the tokens ϑ(·, j) are updated, so that a) the token’s

corresponding letter l occurs at position j, b) in the best path,

all letters of the word occur in the given order, c) between

two subsequent letters of the word, only ε-node activations are

considered and d) if two subsequent letters of a given word

are the same (e.g. positions 3 and 4 in “Hello”), at least one

ε node must lie between them. To compute the value of the

token ϑ(i, j), a set Tbest is created in which all valid tokens are

stored that can act as predecessor to the token ϑ(i, j) according

to the constraints mentioned above. If at sequence position j

the letter ci is considered (which might be a real letter or ε), the

token corresponding to the same letter ci at sequence position

j − 1 is valid (Line 8). The token corresponding to letter ci−1

(ε if ci is a real letter and a real letter if ci = ε) at sequence

position j − 1 is valid for each but the first letter (Line 9 and

10). Since two different letters might follow each other without

an ε-node activation, the token corresponding to letter ci−2

is valid for these cases, too (Line 11 to 15). Afterwards, the

probability of the best token in Tbest is multiplied with n(i, j)
to obtain the probability of ϑ(i, j). Algorithm 1 is a slightly

simplification of the one given in [40] which was designed for

full sequence transcription, but it is sufficient for our task of

keyword spotting.

E. Modification to perform Keyword Spotting

Algorithm 1 can now be adopted to spot any given word

in a text line s of arbitrary length. The idea is to consider

only the product of the output probabilities of the keyword

letters at the positions where they would fit best. Therefore,

a virtual node is added to the output nodes, called the any-

or ∗-node. The keyword to be spotted is then preceded and

succeeded by ∗ to symbolize the any-node. A path through

the output activation matrix of a text line will be on the any-

node until the most likely position of the keyword in the text

line, then traverse through the letters of the expanded word and

eventually finish on the any-node again. The value of the any-

node is n(∗, j) = 1 for all values of j so that the ∗-segments

of the path do not influence the product.

In order to find entire words but no sub-words contained

within longer words, we add a ′ ′ (white space) character to

the front and the end of the keyword:

w′ = ∗ l1l2 . . . ln ∗

This, however, might lead to problems since keywords occur-
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Algorithm 1 The CTC Token Passing Algorithm for single

word recognition

Require: input word w = l1l2 . . . ln
Require: sequence of letter probabilities, accessible via n(·, ·)

1: Initialization:

2: expand w to w′ = εl1εl2ε . . . εlnε = c1c2 . . . c2n+1

3: ϑ(1, 1) = n(ε, 1)
4: ϑ(2, 1) = n(l1, 1)

5: Main Loop:

6: for all sequence positions 2 ≤ j ≤ t do

7: for all positions i of the extended word 1 ≤ i ≤ 2n + 1 do

8: Tbest = {ϑ(i, j − 1)}
9: if i > 1 then

10: Tbest = Tbest ∪ ϑ(i − 1, j − 1)
11: if i > 2 then

12: if ci 6= ε and ci 6= ci−2 then

13: Tbest = Tbest ∪ ϑ(i − 2, j − 1)
14: end if

15: end if

16: end if

17: ϑ(i, j) = max(Tbest) · n(i, j) ⊲ multiply the best token’s
probability with the letter probability

18: end for

19: end for

return max {ϑ(2n + 1, t), ϑ(2n, t)} ⊲ The word can either
end on the last ε (c2n+1) or on the last regular letter (c2n)

ring at the beginning of a text line do not necessarily have a

white space preceding them. Similarly, a text line image can

end with the last pixels of the last word. Therefore, we add

sequence elements to the beginning and the end of each text

line that represent extra white space.

If we now use the CTC-Algorithm for single word recog-

nition to compute the probability of the word being w′, we

compute in fact the probability that the text line starts with

any possible character but at some point in the text line the

first letter of the word w occurs. It is followed by the second

letter, and so on until the word’s last letter, followed by a

whitespace and then, again, by the any character. Obviously,

the size and content of the text before and after the keyword

w′ is irrelevant, since n(∗, j) = 1. Yet, the returned probability

of a word still depends upon the word’s length. To receive a

normalized value which can then be thresholded, we take the

logarithm of the probability pCTC(w|s) and divide it by the

search word’s length

fCTC(w|s) =
log(pCTC(w|s))

|w|
.

An approximation of the keyword’s length that works very

well is to use the number of characters of the word. This

value is constant throughout the test set for each keyword. A

more refined procedure is to use the length of the part of the

text line that is assumed to be the keyword. In the rest of the

paper, however, we focus on using the number of letters in

the word for the purpose of normalization because it returned

better results.

III. REFERENCE SYSTEMS

In this section, we will describe the reference systems to

which we compared the approach proposed in this paper. The

first one is a Dynamic Time Warping (DTW) based keyword

spotting system, while the second one is a recently proposed

learning-based keyword spotting system using Hidden Markov

Models (HMM). Finally, we also use a state-of-the-art HWR

system to transcribe the text. On this result, a simple ASCII

search is performed.

Note that the DTW reference system is based on a prior

word segmentation of the text line image, much like other

popular word spotting techniques, e.g. holistic approaches

that model word images with HMMs [47]. For comparison

with our NN-based word spotting system, we have applied

DTW to perfectly segmented word images, i.e. we do not take

segmentation errors into account.

A. DTW Reference System

DTW is a dynamic programming approach that finds an

optimal alignment between two sequences by a pairwise

comparison of elements of the first sequence to elements of

the second sequence. Each element in the one sequence can be

assigned to several consecutive elements in the other sequence.

In [48], DTW was proposed for word spotting in speech

recognition, and also the first approaches to word spotting for

handwritten text used DTW representing text as a sequence of

features vectors (see Section II). While various features have

been proposed in conjunction with DTW [22], [29], [49], we

use the same set of features that is used for NN-based word

spotting to ensure an objective comparison.

Our DTW implementation, similarly to the one described

in [4], makes use of a Sakoe-Chiba band [50] to speed-up

the computation. The only pruning criterion we used was the

length of the word, i.e. one word image must not be more than

twice as long as the other.

In order to spot a certain keyword, all instances of that

word occurring in the training set are compared to all words

in each text line. In this paper, we consider a perfect, manually

corrected word segmentation in order to rule out the influence

of segmentation errors on the word spotting performance. This

results in a bias of the system evaluation in Section IV in favor

of the reference system. The minimum of all these DTW

distances serves as a distance function of the keyword’s word

class to the text line. If the DTW distance of a keyword to the

text line is below a given threshold, the text line and the word

having the minimum distance is returned as a positive match.

B. HMM Reference System

The second reference system was recently presented in [30].

It is based on Hidden Markov Models (HMMs). HMMs are

state-of-the-art for modeling handwritten text [51] and have

been widely used for keyword spotting [3], [28], [31], [33],

[47], [52], [53]. In [30], trained character models are used to

spot arbitrary keywords in complete text line images using an

efficient lexicon-free approach.

The same image preprocessing and feature extraction meth-

ods are applied as for the proposed system (see Section II).

In the training phase, character HMMs are trained based on

transcribed text line images. At the recognition stage, the score

of an unknown text line image is given by the likelihood

ratio R = LK

LF

between a keyword text line model K and

a filler text line model F . The keyword model K is shown in
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(a) Keyword HMM

(b) Filler HMM

Fig. 5. Hidden Markov Models

Figure 5(a) for the keyword “word”. It is constrained to contain

the exact keyword character sequence at the beginning, in the

middle, or at the end of the text line, respectively, separated

with the space character “sp”. The general filler model F

is given by an arbitrary sequence of characters as shown in

Figure 5(b). It is used to normalize the likelihood score LK

obtained by the keyword model. In a final step, the likelihood

ratio R is normalized with respect to the length of the keyword

character sequence L and is compared to a threshold T for

keyword spotting R

L
> T . For more details on the HMM-

based reference system, we refer to [30].

C. Transcription and ASCII Search

Most papers about word spotting claim that the task of

word spotting should not be done using a HWR system to

transcribe the text and search on the ASCII output. It is argued

that spotting single words is fundamentally easier and should

perform substantially better at a lower computational cost.

However, the authors of the current paper have not found

any formal proof nor any empirical evidence reported in the

literature to substantiate this claim. We are therefore interested

in such a transcription and a subsequent ASCII search (TAS).

The neural networks used for the word spotting approach

proposed in this paper can easily be used for handwriting

recognition as mentioned in Subsection II-D. The CTC token

passing algorithm described in [40] takes as its input the output

activations of the neural network and statistical information

about all recognizable words, which implies that a dictionary

dictates which words can be recognized at all. As a result of

the recognition process, we get the transcription of the given

text line, i.e. a likely sequence of words. The CTC Token

Passing algorithm, however, is unable to return any form of

lattice or n-best list. Furthermore, using the returned word

probabilities do not perform very well. Hence, we only use

one transcription for each text line with the binary information

whether the keyword occurs in that transcription or not.

As has been shown in the HWR domain [46], language

information can have a positive effect on the recognition rate.

Therefore we used two different reference systems in our

experiments. The first HWR-based reference system makes use

of additional language information, while the second one can

only access data that is available in the training and validation

set. The language information we use is given in form of a

bi-gram language model. Ideally, such a model contains, for

each pair of words (w1, w2), the probability p(w1|w2) that

word w1 is followed by word w2 in a text. Obviously, these

bi-gram probabilities are not known, but can be estimated

from a sufficiently large text collection. In our experiments,

the following two reference systems were used.

1) TAS with language model: This reference system makes

use of the London/Oslo/Bergen (LOB) corpus [54] as an

external sources to estimate the bi-gram probabilities of the

words. The LOB corpus is a large collection of more than a

million words (newspapers, etc.) and resembles a cross-section

of the English language at the time of its publication (1961).

2) TAS without language model: In case no additional

information is available, we set the list of words that can

possibly be recognized equal to all the words in the training

set. The bi-gram probabilities are estimated on the training set

using modified Kneser-Ney smoothing [55], [56].

IV. EXPERIMENTAL EVALUATION

A. The Data Sets

For testing the proposed keyword spotting method, we used

three different data sets, the IAM off-line database (IAM

DB)1 [57], the George Washington database2 (GW DB), and

medieval manuscripts of an epic poem (PARZIVAL DB) [45].

See Fig. 6 for samples of the data. The pages of all data sets

were scanned and interactively separated into individual text

lines.

The segmented text lines are normalized prior to recognition

in order to cope with different writing styles. First, the skew

angle is determined by a regression analysis based on the

bottom-most black pixel of each pixel column. Then, the

skew of the text line is removed by rotation. Afterwards

the slant is corrected in order to normalize the directions of

long vertical strokes found in characters like ’t’ or ’l’. After

estimating the slant angle based on a histogram analysis, a

shear transformation is applied to the image. Next, a vertical

scaling is applied to obtain three writing zones of the same

height, i.e., lower, middle, and upper zone, separated by the

lower and upper baseline. To determine the lower baseline,

the regression result from the skew correction is used, and

the upper baseline is found by vertical histogram analysis.

For more details on the text line normalization operations, we

refer to [46]. Finally the width of the text is normalized. For

this purpose, the average distance of black/white transitions

along a horizontal straight line through the middle zone is

1http://www.iam.unibe.ch/fki/databases/iam-handwriting-database
2George Washington Papers at the Library of Congress, 1741-1799: Series

2, Letterbook 1, pages 270-279 & 300-309, http://memory.loc.gov/ammem/
gwhtml/gwseries2.html
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(a) IAM database (b) GW database (c) PARZIVAL database

Fig. 6. Samples from the databases used in the experiments.

(a) A word from the GW database.

(b) A word from the IAM database.

(c) A word from the PARZI-
VAL database.

Fig. 7. A visualization of the effects of the preprocessing steps.

determined and adjusted by horizontal scaling. The result of

the preprocessing steps can be seen in Fig. 7.

Additionally, the lines were separated into single words as

well. Note that only the DTW reference system requires the

words to be separated. By contrast, our approach works with

entire text lines. The two databases can be characterized as

follows.

IAM off-line DB: This database consists of 1,539 pages of

handwritten English text, written by 657 writers. It is split up

into a training set of 6161 text lines, a validation set of 920

text lines and a writer independent test set of 929 text lines.

GW DB: The GW Dataset consists of 20 pages of letters,

orders and instructions of George Washington from 1755.

The pages originate from a large collection with a variety

of images, the quality of which ranges from clean to very

difficult to read. The selected pages we use are relatively

clean. The text is part of a larger corpus, written not only

by George Washington but also by some of his associates. It

inhibits some variations in writing style. However, the writing

on the pages we consider is fairly similar. The considered

pages include 4,894 words on 675 text lines. The GW DB

contains the same pages as the one in [27], but we found

the automatically segmented and extracted words to be too

erroneous. Focusing on keyword spotting rather than document

image preprocessing in this paper, we manually segmented

the data set into individual words. Hence, there is a slight

difference in the number of words and word classes.

PARZIVAL DB: We also use the PARZIVAL database pre-

sented in [45] for our experimental evaluation. This database

contains digital images of medieval manuscripts originating in

the 13th century. Arranged in 16 books, the epic poem Parzival

by Wolfram von Eschenbach was written down in Middle

High German with ink on parchment. There exist multiple

manuscripts of the poem that differ in writing style and

dialect of the language. The manuscript used for experimental

evaluation is St. Gall, collegiate library, cod. 857 that is

written by multiple authors. Figure 6(c) shows an example

page.

B. Experimental Setup

Using the training set, we trained 50 randomly initialized

neural networks and used the validation set to stop the back

propagation iterations in the training process. See [40] for

details on the neural network training algorithm.

Part of the LOB corpus has been used to create a set of bi-

gram probabilities. Since the text written in the IAM database

is also a subset of the LOB corpus, the calculated bi-gram

probabilities are well suited for that task. For the GW database,

the situation is slightly different. Although the text is written

is English, the form of English, with respect to both spelling

and grammar, has changed since. Therefore, we mixed the bi-

gram probabilities computed on the LOB corpus with bi-gram

probabilities computed on the training and validation set of

the GW DB in order to create a language model that is both

general and similar to the language at hand. Mixing has been

done using the SRILM toolkit [56]. The same toolkit has been

used to create the language model for the PARZIVAL database.

The ground truth of both sets, training and validation, have
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been used to estimate the bi-gram probabilities and to create

the dictionary.

Each systems returns a value for every tested word w.

This value is a logarithmic probability fCTC(w|s) in case of

our proposed system, the nearest distance to the prototypes

mini(DTW (wi, ·)) when using the DTW approach, or just

a binary information whether the word has been found in

the transcription using an ASCII search. Note that our DTW

implementation returns a DTW distance of infinity if the

keyword does not occur in the training set, since no candidate

can be found to match the word. We perform a line retrieval

task to compare the proposed system with DTW. A text line

is considered a positive match if the keyword occurs in the

training set. Hence, the DTW system returns the smallest

distance of all prototype words to any word in the text line.

The word spotting algorithm compares this value against

a global threshold to decide whether or not it is a match.

In order to make the results as precise as possible, we used

all returned values fCTC(w|s) for the proposed approach and

all returned DTW distances for the DTW approach as global

thresholds. Each threshold produces one point in the recall-

precision plot which merge into a continuous curve for many

different thresholds. To compare different systems, we chose

to consider the average precision over all recall values since

it includes information about the entire curve.

IAM DB

We performed slightly different experiments on each of the

three datasets. The first experiment was done using the IAM

database. We tested 2,807 different keywords (all non stop

words among the 4,000 most frequent words3 that also occur

in the training set) in the IAM dataset. The average number

of occurrences in the training set of each keyword is 5.26 and

in the test set 0.53.

GW DB

The next two experiments were done using the GW

database. Due to the relatively small size of this database, we

performed a 4-fold cross validation. The 20 pages are split up

into four blocks, consisting of five pages each. Two blocks are

used for training, one block for validation and one for testing.

We selected all words occurring in the training set to perform

the word spotting. The average number of occurrences in the

training set of each keyword is 2.02 and in the test set 0.74.

Note that we also include stop words in this setup to make the

results more comparable to the existing literature [41], [59].

With the experiments on the GW data set we addressed also

another issue. Because DTW and other QBE systems do not

need to be trained on the data set, they can be used for any

new script or writing style. An interesting experiment would

therefore be to compare them to neural networks that have not

been trained on the actual data base. Consequently, we reused

the 50 neural networks from the experiments on the IAM DB

and evaluated their applicability on the GW data set.

3We used the stop word list from the SMART project [58],
which can be found at http://jmlr.csail.mit.edu/papers/volume5/lewis04a/
a11-smart-stop-list/english.stop
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Fig. 8. The average label error rate of the adapted networks when used for
transcription.

Assuming a user is willing to transcribe a few pages of text,

the network can be retrained on the new data for adaptation.

In Fig. 8 the effect of the adaptation to the GW data set can

be seen as a reduction of the label error rate. This approach

with similar experiments has also been proposed in [44].

Two different adaptation experiments were conducted using

again a 4-fold cross validation and the same splitting of the 20

pages into 4 blocks as above. In the first adaptation experiment,

we used one page of one block for training and one page

of the same block for validation. One block was used for

testing, for the purpose of better comparability to the other

GW experiments. In the other adaptation experiment, we used

two pages of one block for training and the other three pages

for validation. Again, one block was used for testing.

In addition, we used the neural networks also for TAS word

spotting. Since we assume that we have none or only very little

transcribed text of the GW DB when adopting the networks,

we used the language model created on the LOB corpus

only. However, we added the keywords with a fixed uni-gram

probability (the average of all existing uni-gram probabilities).

PARZIVAL DB

The last experiments were done using the PARZIVAL

data set. We trained 10 neural networks on 2,237 lines of

transcribed text, and used 912 additional lines as a validation

set. The test set contained 1,329 lines. The text is written

in middle high German and the meaning of most words is

unknown to the authors of this paper. Hence we did not try to

distinguish between stop words and non-stop word. To avoid

an unfair comparison with the DTW reference system, we

used all 3,220 words occurring in the training set as possible

keywords. The average number of occurrences in the training

set of each keyword is 3.53 and in the test set 1.79. We also

performed TAS keyword spotting. As mentioned above, the

language model was created using the training and validation

set. This limits the TAS approach, since words not occurring

in the training or validation set cannot be recognized because

they are not contained in the language model.

C. Results

In the experiments, the single best neural network on the

validation set was chosen to spot the keywords on the test set.

Its performance was compared to the performance using DTW,

HMM, and TAS for all three databases. The proposed system

and the HMM and DTW reference systems use an adjustable
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Fig. 9. Recall-precision plots of all systems on the IAM database.

threshold which makes it possible to plot a continuous curve.

TAS, on the other hand, works with binary information of a

word being successfully spotted or not. It has therefore a fixed

precision and a fixed recall characteristic that corresponds to

a single point in the plot. Thus we did not select a single best

system on the validation set but present the performance of all

systems on the IAM and PARZIVAL database results. For the

GW database, we differentiate between comparing our system

to DTW and HMM, on the one hand, and analyzing the effect

of adapting the neural networks to the GW database, on the

other hand. For the sake of readability, we do not plot the

results of the TAS systems.

In this first experiment, we used the IAM DB to compare

DTW, HMM, TAS and the proposed BLSTM keyword spotting

system. The resulting recall-precision plot can is given in

Fig. 9. The recall-precision curve of the DTW system can be

seen in the lower left corner, indicating that this system might

not be well suited for this special task. The system based on

HMMs performs much better and can be seen in the middle

of the plot. The proposed system, however, works well with

diverse handwriting styles and words not encountered in the

training set. Transcription and ASCII search keyword spotting

result in distinct points even above that line. Clearly, the

external language information given in the large LOB corpus

has a positive effect on the precision, at he cost of a lower

recall value, when compared to using an internal language

model only.

In case of the GW database, the proposed BLSTM NN

keyword spotting technique outperforms both reference meth-

ods which can be seen in Fig. 10(a). The performance of the

adapted version are plotted in Fig. 10(b). The system with

the lowest performance is the neural network based keyword

spotting system trained only on the IAM DB, performing even

words than DTW. When the neural networks are adapted to

the GW data set, the performance substantially increases. The

best system, however, is the one that is trained entirely on

the GW DB. In Table I, the average precision of the keyword

spotting after the adaptation steps are given. The column mean

shows the mean of all 50 systems. The column selected shows

the average precision of the system that performed best on

the IAM validation set before adaptation. The last column,

GWDB

system mean selected best on valset

IAM NN 0.41 0.43 0.43

IAM NN (2 pages) 0.68 0.71 0.47

IAM NN (5 pages) 0.73 0.76 0.80

TABLE I
THE AVERAGE PRECISION OF THE ADAPTED SYSTEMS.
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Fig. 11. Recall-precision plots of all systems on the PARZIVAL database.

best on valset, shows the average precision of the system that

performed best on the corresponding validation sets, i.e. the

IAM validation set for the unadapted system, the 1 page GW

validation set for the 2 page adaptation, and the 3 page GW

validation set for the 5 page adaptation.

For the results of the TAS systems we refer to Table II.

One can see that the adaptation process leads to an increase

in precision and recall. The recall percentage, however, of the

system that is trained entirely on the GW DB is not met. It

also shows that the information derived from the larger LOB

corpus may still be useful, although the kind of texts and time

of origin are somewhat different.

Finally, the results from the PARZIVAL DB also show

the advantage of the proposed system over both reference

systems. The neat, regular writing style is advantageous to

language average best system

Database model prec. recall prec. recall

IAM DB
external 0.77 0.79 0.78 0.79

internal 0.59 0.84 0.59 0.84

GW DB
external 0.78 0.75 0.82 0.83

internal 0.66 0.79 0.69 0.85

language

Database Adaptation method model prec. recall

GW DB

unadapted
extern

(LOB)

0.67 0.47

adapted (2 pages) 0.83 0.69

adapted (5 pages) 0.86 0.74

TABLE II
THE AVERAGE PRECISION AND RECALL VALUES OF THE TRANSCRIPTION

AND ASCII SEARCH APPROACH.



10

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

P
re

c
is

io
n

Recall

Proposed

HMM

DTW

(a) The performance of the proposed system compared to the
HMM and DTW reference system.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

P
re

c
is

io
n

Recall

Proposed

adapted 5 pages

adapted 2 pages

trained on IAMDB

(b) The performance during the adaptation process.

Fig. 10. Recall-Precision plots of all systems on the GW database.

system IAM DB GW DB PARZIVAL DB

Average of NNs 0.76 0.71 0.92
NN best on val set 0.78 0.84 0.94
NN best on test set 0.79 0.84 0.94

HMM 0.36 0.60 0.83

DTW 0.02 0.48 0.37

TABLE III
AVERAGE PRECISION OF THE SPOTTING TASK ON THE IAM DB AND

PARZIVAL DB

all systems, and the ability to learn leads to a nearly perfect

recall-precision-curve (Fig. 11).

A consolidated view clearly indicates the superiority of

the proposed word-spotting system not only over the DTW

reference system but also over the HMM reference system. Ta-

ble III shows the average precision of the compared methods.

Note that restricting the keywords in the IAM DB experiment

to words occurring in the test set does not lead to such a

substantial improvement of the DTW performance as it does

on the GW DB, which is possibly due to the more diverse

writing style encountered in the IAM DB. Without a training

set at hand, QBE systems in general or DTW in particular

are the only systems applicable to perform word spotting.

However, if training data exists it can be exploited to further

improve the performance.

D. Comparison with related literature

The experiments presented in this paper, especially the ones

on the GW data set, are similar to already published results.

Although the task, the data set and the evaluation method

are not fully comparable, we will discuss some published

results, to put this paper in relation to existing work. The most

prominent works on this database have been published by Rath

et al [59], [4].

Most of the literature dealing with George Washington’s

data use automatically segmented words for testing. Addition-

ally, not always the same pages of the manuscript are used.

In [13], the authors focus on a subset of 10 selected pages

that have a good quality. They report an average precision

of 0.65 using a DTW system and 0.62 using corner feature

correspondences.

In [22] the authors propose a form of histogram of Ori-

ented Gradients (HOG) features and Continuous Dynamic

Programming as a line based approach. They report an average

precision of 0.79 for a 15 keywords. Exactly the same words

have been used as keywords with an R-precision of 0.6 in [17].

Both of these works use the same 20 pages as we do, although

the groud truth might be slightly different, due to rules on how

to handle hypthenated words. The authors in [17] use the same

database and ground truth as [59], while the authors of [22],

similarly to us, created a new ground thruth.

In [41] a decision tree is investigated and in [59] a statistical

model using holistic word features. While the authors of the

papers use the same 20 page dataset as we do, both references

use a different cross-validation set up. They perform a 10-fold

cross validation where 90% of the lines constitute the training

set while 10% of the lines where used for testing. When using

all words with at least one occurrence in the training and test

set, the authors report an average precision of 0.54 [59] and

0.79 [41]. This setup is the fairly close to the setup used in

our experiments on the GW data base where we have reached

an average precision of 0.84.

Word recognition has also been investigated using the GW

data set. In [27], the authors experimented with an HMM-

based system along with a statistical language model some-

what similar to ours. They experimented with several language

models, including an internal model derived from the 19

pages of their cross-validation training set and an extended

model using text written at around the same time. Note, that

holistic features from single word images are used. Hence their

HMM consists of one state per word. The paper reports an

accuracy of 0.470 with and 0.606 without out-of-vocabulary

(OOV) words when the HMM is trained on 10 pages, like in

ourexperiments. When using 19 pages for training and one for

testing, the accuracy is increased to 0.551 resp. 0.651. These

two figures of performance are used in [18] as a benchmark

and topped using a matching technique on the words’ contours.

This leads to an accuracy of 0.694 with and 0.826 without

OOV words. Further reported accuracies are 0.611 with and

0.723 without OOV words in [60] and 0.84 with and 0.71
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Fig. 12. The average precision of a word spotting system (on the test set)
compared to the word error rate when used as a handwriting recognition
system (on the validation set) for all 50 networks on the IAM database.

without OOV words in [61]. Both works use also a 20-fold

cross validation with a training set of 19 pages and manually

segmented words.

We can report on our data set an average precision of

0.84, which is not only significantly higher than the DTW

based system, but also the highest reported number among

the literature that covers learning based approaches. Although

these numbers can not be directly compared, they show that the

method proposed in this paper is very well suited for historical

data.

E. Correlation of Keyword Spotting and Recognition

As seen above, a neural network used for word spotting can

be used, without modification, for handwriting recognition as

well. The only change needed concerns the post-processing

algorithm (CTC). This makes it possible to compute the cor-

relation between the recognition accuracy of a neural network

and its performance when used for keyword spotting.

The scatter plot in Fig. 12 shows, on the IAM database,

the correlation between the word error rate when using the

neural network as a handwriting recognition system and the

average precision when using the neural network for the task

of word spotting. The complete list of correlation coefficients

can be found in Table IV. It can be seen that, although a

high correlation exists between the spotting and recognition

performance, this correlation is not perfect.

These results show that the underlying problems to be

solved, though similar, are not identical. A handwriting recog-

nition system decides on the best words among a set of

possible candidates. Our results show that this works very well

resulting in a high precision and a high recall value. Yet, it

has the disadvantage that, for a certain position in the text,

it can only return the word recognized. A keyword spotting

system on the other hand returns the keyword’s likelihood.

Therefore, keywords can even be found if the transcription

of an HWR system misrecognized a word. Another point

that distinguishes the two approaches is the capability to

decide whether recall or precision is more important in a

given retrieval task. However, the most important difference is

that keywords can obviously be spotted successfully without

a complex handwriting recognition system. E.g., DTW only

needs very few sample words and the proposed BLSTM neural

networks can be trained on a different database and achieves

a similar performance, although a transcription using these

neural networks would result in a text having a label error

rate of > 50%.

Furthermore, the proposed keyword spotting system needs

only a few milliseconds to process one text line, while a

transcription of a text line using a language model needs up to

several minutes. As long as time requirements do not play any

role, it might be beneficial to perform an off-line preprocessing

of the entire archive, for example in the form of a n-best

transcription of each text line on both word and character level

to preserve the possibility to find words that do not occur in

a dictionary. When this is not possible, our proposed system

seems to be the best choice. Examples of this are fast search

on newly scanned documents or large databases. Especially

for historical documents, databases can be rather large. The

entire George Washington collection contains 140’000 pages

and the historical document collection of the cabinet of the

Dutch Queen [62] contains approximately 300’000 pages. A

keyword spotting system based on text recognition does not

seem feasible for these databases. Assuming text is written

on three quarter of the collection, each page contains 20 lines

and a recognition system needs 5 minutes to recognize one

text line. Then it takes 28 respectively 40 years to do the

preprocessing of the databases. On the other hand, a keyword

can be spotted on one text line in one millisecond, leading to

a search time of 33, respectively 100 minutes.

For large corpora with this approach, the recognition task is

unrealistic while the word spotting task is potentially useful.

They are complementary and one could imagine doing word

spotting to locate the item of interest and then recognizing

only the page of interest.

As fas as time is concerned, all learning based systems

have the disadvantage of needing the time it takes to train

the system. However, once the system is trained, the keyword

spotting can be performed faster than example based systems.

While the number of words being checked in each text line is

the same, the words do not have to be compared to all suitable

training data but only to the model parameters.

V. CONCLUSION

In this paper we presented a novel keyword spotting ap-

proach using bidirectional long-short term neural networks

in combination with a modified version of the Connectionist

Token Passing algorithm. This system has several advantages

compared to existing techniques. First, it is a line based

approach and does not need any word segmentation. Secondly,

although the system needs to be trained, it does not require

bounding boxes around characters or words as often needed

in the keyword spotting literature. The only requirement is a

transcription of the text lines in the training set. Finally, being

derived from a general neural network based handwritten text
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Language Accuracy

Database Model valset testset

IAM DB
external 70.90 65.43

internal 68.10 65.43

GW DB
external 67.11 55.98

internal 76.3 52.92

Language Correlation

Database Model valset testset

IAM DB
external -0.768 -0.850

internal -0.812 -0.806

GW DB
external -0.914 -0.896

internal -0.961 -0.835

TABLE IV
THE RECOGNITION ACCURACY AND THE CORRELATION BETWEEN THE

AVERAGE WORD SPOTTING PRECISION AND THE HANDWRITING

RECOGNITION.

recognition system, any arbitrary string can be searched for,

not just the words appearing in the training set.

We compared this approach to the common dynamic time

warping approach on three data sets as well as a modern

HMM-based keyword spotting system, which include both

modern and historical handwritten data. Furthermore we com-

pared these methods with the results returned by recognizing

the text using a complete handwriting recognition system

followed by a plain search in the ASCII character output string.

We demonstrated that dynamic time warping, while appli-

cable with some success to historical data, has difficulties on

the modern handwriting data set to cope with the differences

in handwriting styles encountered between the training and

the test set. The same argument seems valid for all spotting

systems tried so far that treat word spotting as an image

retrieval problem where similar sub-images of a given pro-

totype are to be found. The HMM-based approach performs

better and is able to cope with diverse writing styles. Yet,

is is also constantly outperformed by the proposed system.

To do keyword spotting for words that do not occur in the

training set, it seems that more sophisticated methods or even

handwriting recognition are necessary, especially for arbitrary

and diverse writings.

The system proposed in this paper – a handwriting recogni-

tion system adjusted to the task of word-spotting – is flexible

enough to deal with a variety of diverse handwritten texts.

Due to the initialization of the neural networks using random

weights, a natural variance of several different neural networks

can be observed. However, this is not a problem because it is

possible to select high performing candidates on the validation

set.

We analyzed the performance of the neural networks when

using them in a recognition task followed by word spotting on

the output and investigated the influence of external informa-

tion in form of a language model. The increased precision

achieved gives rise to new research directions. A keyword

spotting system that, after finding a candidate, decodes the

word preceding it to include the bi-gram probability, merits

further investigation.

The combination of several systems, as it has been done

successfully with handwriting recognition systems, seems an

interesting option to be investigated in future research.
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