Application of Dynamic Pruning to Field-Based Retrieval
Models

ABSTRACT

We introduce a method for reformulating field-based re-
trieval models to significantly improve execution efficiency
over standard model implementations. Field-based retrieval
models have shown significant improvements over models
without field awareness. Field-based models utilize the doc-
ument structure to improve retrieval results, representing
fields or tagged content as micro-documents within the larger
document. However processing field information separately
in these retrieval models often causes a significant increase
in computational cost over their field-less counterparts. Ad-
ditionally, field-based retrieval models in their original for-
mulation do not easily lend themselves to dynamic pruning
via algorithms such as Maxscore and WAND.

To mitigate these problems we introduce the idea of a d-
function — the reformulation of a given field-based model
that allows iterative evaluation of a document. The §-function
form is completely score-safe for all documents, transitively
making it rank-safe. We derive d-functions for the PRMS,
BM25F, and PL2F field-based retrieval models, showing how
these formulations allow fine-grained dynamic pruning dur-
ing query evaluation.

Our experiments show that using the §-function formula-
tion results in a significant increase in query efficiency over
both unmodified and Maxscore-pruned test collections. Us-
ing a collection of documents from the OpenLibrary, we also
show that the J-function better scales with increasing field
size than Maxscore.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—search process,retrieval models; H.3.4
[Information Storage and Retrieval]: Systems and Soft-
ware—performance evaluation
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1. INTRODUCTION

The vast majority of documents today have some form of
structure. Large documents such as books can often have
over a dozen fields of metadata or specific structure. Web
documents have had their link content and title informa-
tion heavily exploited to improve web retrieval. All emails
are sent with sender, recipient, and subject information that
can be used to better retrieve relevant emails. Even tweets
and text messages come with metadata fields such as times-
tamps and sender /recipient information. As a simple exam-
ple, imagine we would like to search for “a New York Times
article that discusses the role of the United States in aiding
Haiti after the 2010 earthquake”. Based on this information
need, we may form a query that looks like the following:
united states haiti earthquake 2010 aid. However if
we can use information in certain fields of the document,
we could be more specific:

keywords: haiti earthquake aid
keyphrases: "united states"
publisher: "new york times"
timeframe: 2010

In addition to the typical keyword and phrase description,
we also specify who we would like the publisher to be, and
about what time we expect the article to appear. Field-
based retrieval models often utilize the information in fields
like “publisher” or “timeframe” by incorporating weighted
scores of these fields into the final document score. Many
of these field models are natural mathematical extensions
of well-known retrieval models, but by using this additional
information these models often outperform their field-less
counterparts. While the mathematical formulation of such
models is often straightforward, transferring these models
to implementation can result in inefficient execution, and
techniques for improving their efficiency, such as dynamic
pruning, cannot easily be applied to these implementations
without ad-hoc workarounds.

In this work, we present a model reformulation technique
that produces a §-function. The §-function form allows for
iterative computation of document scores; this in turn allows
current dynamic pruning methods such as Maxscore and
WAND to be used to their full potential. To demonstrate the
use of d-functions over models too complex for existing dy-
namic pruning techniques to operate effectively, we consider
field-based extensions to 3 popular retrieval models today:



the probabilistic retrieval model for semi-structured data
(PRMS), which is a field-based extension to the language
model family; BM25F, which provides field-aware semantics
for the Okapi BM25 model; and PL2F, which extends the
Divergence from Randomness PL2 model to use fields by
creating composite term scores based on fields. By deriv-
ing the é-functions of these three models, we can use them
to then apply standard dynamic optimization techniques to
more aggressively prune during the scoring process. Our
experiments show that this improved pruning can provide
substantial gains over the standard processing model and
standard Maxscore algorithm applied to the original model.

This paper proceeds as follows. In Section 2 we discuss re-
lated work, including more detail on prior dynamic pruning
techniques and the three retrieval models under consider-
ation. In Section 3 we introduce the general concept of a
d-function and perform a simple derivation of a d-function
over a query-likelihood model. In Section 4 we derive J-
functions for the three target models. Section 5 describes
the setup and evaluation of all experiments conducted. We
discuss results in Section 6, and conclude with a discussion
in Section 7.

2. RELATED WORK

The work discussed in this paper draws from two separate
research areas in IR: retrieval models that leverage semi-
structured documents that contain fields, and query-time
(also known as ‘dynamic’) optimizations, which lower the
time it takes to return a scored set of documents by chang-
ing the score processing model. We review these two areas
separately, then discuss how these two areas come together
for the purposes of this paper.

2.1 Field-Based Retrieval Models

There are many ways to model structure in documents,
and how to use them during retrieval. The Database (DB)
community specializes in the case where documents are com-
pletely structured (i.e. every piece of data falls into a spe-
cific, well-defined field). Even considering semi-structured
data, there has been research that bridges work between the
DB and IR community, such as similarity joins [4]. Our
focus here is on ranked retrieval models, so an in-depth re-
view of DB-style retrieval models is beyond the scope of this
paper.

Considering retrieval models that retrurn results as a rank-
ing as in a typical IR system, numerous researchers have
spent years working on constructing usable digital libraries
[6, 7, 16], where the elements in the collection carry a con-
siderable amount of structured metadata. The Initiative for
the evaluation of XML has engaged researchers in search
over XML documents for several years, spurring research
over documents with a hierarchical structuring of fields [8].
For the scope of this work, we focus on three recent proba-
bilistic ranking retrieval models that have shown promise as
natural extensions of several well-known IR retrieval models.
We describe these extensions below.

The PRMS model was first developed by Kim and Croft
in order to improve search over desktop-type collections|9].
The PRMS model uses inferred field-mapping probabilities
to weight the importance of each term/field pair in a given
query. This is in contrast to the mixture of language-models
(MLM) approach first proposed by Ogilvie and Callan [12],
where the component model weights are externally parame-

terized. For the purposes of this work, we may view PRMS
and MLM as the same formulation; therefore the §-function
derivation of PRMS applies to MLM without modication.

The BM25F model was first developed by Robertson et al.,
as a response to many models at the time linearly combining
scores [13]. The authors showed that when a retrieval model
uses a saturating term scoring function (such as BM25),
scoring the fields independently results in the term appear-
ing novel to each field. As the first occurrence of a term pro-
vides more confidence then subsequent occcurrences, scoring
fields independently overweights the importance of a term.
Instead, the authors combine at the term frequency level,
then apply the scoring function over the combined frequen-
cies. This to a much smoother rise in scoring as a function
of term frequency across fields. We follow the BM25F for-
mulation put forth by the same group of researchers for the
TREC 2004 HARD Track [17].

PL2F was developed as a field-aware extension for the PL2
variant of the DFR framework. The term/field score con-
tributions are linearly combined to make a “pseudo-term”
score, and this composite score is then used in the stan-
dard PL2 score combination model. The PL2F model im-
plemented for the experiments here are from the dsecriptions
provided by Macdonald et al. for the TREC 2005 Enterprise
Track [11].

2.2 Query-Time Optimization

There have been numerous contributions to query-time
optimizations; we limit our review only to selected contri-
butions that apply to the current experimental setting.

Turtle and Flood first describe the Maxscore algorithm
after a review of the two major index organizations at the
time: document-at-a-time (daat) and term-at-a-time (taat)
evaluation [15]. The authors show that Maxscore can oper-
ate over both daat and taat, provided the index model sup-
ports skips over postings within a given term posting list,
and the model can provide estimates of the upper bound
that may be produced by a posting list. We call a function
which provides such an estimate an upper-bound estimator
(UBE).

Broder et al. described a two-pass algorithm over daat
indexes they dubbed WAND, which reduces the number
of postings to decode by first considering any given query
to be a strictly conjunctive query, then relaxing that con-
straint as necessary to complete scoring [1]. Like Maxs-
core, WAND relies on upper-bound estimators to operate
efficiently. The authors describe several UBEs for unigrams
and bigrams, however they admit their estimators could be
improved upon.

In recent work, Macdonald et al. define a new UBE they
call maxiy. They derive maz,s for Language Models, BM25,
and DLH13, by viewing the estimator as a constrained max-
imization problem (CMP) over the space of term-frequencies
and document lengths [10]. We follow their approach here to
verify that the estimators used here are reasonable and ad-
missible heuristics for field-based models. We now introduce
the terminology used in the remainder of the paper.

2.2.1 Terminology

Let D denote the set of documents and |D| the number
of the documents in the collection. C' denotes the multiset
of term occurrences in the whole collection. |C| is then the
number of tokens in the collection. For all formulae, we



assume d € D, t € C. A query Q is composed of one or
more terms. We assume |Q| =n: Q = qi...qn. For a given
collection D, we assume there is a set of m specified fields:
F ={fi...fm}. We assume that we can access individual
posting lists for each term/field combination, and we use
Ct, f;d b0 denote the number of times term ¢ occurs in in field
J in document d, and s, ;4 is the score for term ¢; in field
f; in d (e.g. the score of york in the publisher field in
document 37).

For a given retrieval model M, our desire is to construct
dn, which is the §-function specific to M. For the scope of
this paper, we can think of M as a function that produces
a score when given @ and d € D, which we denote as Sqq.
We denote a document score using S, and a partial (i.e.
component) score for d using lower case s. In all cases,
when it is umambiguous we drop the d subscript for brevity:
St;fjd =7 St;f;-

2.2.2  On Potentials

We assume all models are capable of generating an esti-
mate (also called a potential) for s;,y,, the score of a term
t; in field f;. This potential, denoted ¢y, 1) must be
document-independent, and 2) must never under-estimate
the maximum score for the term-field pairing. Any estima-
tor that meets the two above criteria we say is admissible!.
The ideal admissible estimate is the supremum of the set
of scores for the term, however if the scores are computed
at retrieval time it is not practical to compute this value
at index time, and we assume this to be the case. All of
the UBEs discussed above meet the admissibility criteria.
However the UBEs discussed so far are specific to term-level
posting lists, whereas we require admissible estimators for
term/field posting lists. When necessary, we derive a reason-
able and admissible UBE for a term/field scoring function.
We denote the composite potential ¢, as the potential func-
tion for the entirety of term t;. To simplify reading, we may
drop the subscript for the term or field (e.g. ¢¢; — ¢¢) if it
is held invariant for the formula. Finally, we denote ¢ as the
potential of a query @, which is the best score possible for
any document to receive for query Q). Although ¢ depends
on both @ and M, we omit these symbols as they can always
be assumed in the following formulae.

Our discussion will involve substitutions of the term/field
potentials with actual scores. We denote the substitution
of quantity ¢y, s, with sy, r, in ¢ as ¢[¢, s, /s, 5,]. For gen-
erality, when we want to indicate a quantity that has some
number of substitutions (including zero substitutions), we
modify the symbol with a caret (e.g. ¢ — $). When appro-
priate to quanify the number of substitutions made so far,
we superscript the number of substitutions so far (e.g. ¢°
indicates 3 substitutions from the original ¢). We now de-
scribe the Maxscore and WAND optimization algorithms in
detail, and discuss why their use is limited over field-based
models.

2.2.3 Maxscore and WAND

For a query @), Maxscore makes use of ¢;, the admissi-
ble UBE for each term. The algorithm also maintains an R

'This is in fact not an abuse of language. The complete
heuristic is when we consider h = s, r, — ¢+, 5, to update

¢. Therefore if ¢t,5; does not underestimate, h does not
overestimate, which is the technical definition.

value, which is the lowest score in the list of scored candi-
dates so far. If the number of documents scored so far is less
than k, the desired number of ranked documents to return,
then R = —oo. At the beginning of scoring a candidate
document d, it is assumed to have the maximum possible
score ¢. As each term in evaluated for that document, its
potential is replaced by its actual score: ¢ < ¢ + s¢ — ¢r.
Note that these successive replacements act as a monotoni-
cally decreasing estimate of the score for d. Therefore after
this replacement, if dA) < R, then we know d cannot make it
into the final ranked list, and we stop scoring d. Therefore
Maxscore looks to short-circuit score calculation at the term
level.

Weak-AND, or WAND for short, was proposed by Broder
et al. as a way to fully skip scoring documents using a two-
level processing mechanism [1]. Like Maxscore, WAND de-
pends on admissible UBEs of each term. When considering
a candidate d, WAND first uses the UBEs to consider the
query in a conjunctive manner, which determines whether
or not d will be fully scored. The threshold 6 is used to
determine how conjuctive the query is considered to be. If
0 = ¢ a candidate must contain all query terms to qualify for
scoring. As 0 is lowered, fewer terms are required to be in
d to qualify for scoring. Therefore 6 provides a trade-off be-
tween speed and accuracy. As opposed to Maxscore, WAND
looks to short-circuit scoring of entire documents using the
0 threshold.

Both algorithms maintain a “quorum” of posting list point-
ers in order to cull the number of candidates. Based on R
or 0, a minimum number of terms must be present in order
for a candidate to be fully scored. For Maxscore, as R in-
creases (due to more documents being scored), the quorum
begins to shrink because fewer pointers must be checked to
determine candidacy (imagine when missing only one term
causes ¢ < R to be true). For WAND, the authors describe
the quorum implicitly as a “pivot term”, which is the first
term such that quQ ¢q < 0. In both cases, only candidates
in the quorum posting lists are considered. All iterators not
in the quorum do not actively provide candidates, therefore
the total candidate pool shrinks as the quorum shrinks.

2.3 Limitations of Prior Work

The field-based models we consider project each query
term into each field to produce a score (if the term does
not appear in a field, its score contribution reduces to back-
ground). This means for n query terms and m fields, we
open n X m index pointers to evaluate the given query. Both
Maxscore and WAND have been shown to work quite effec-
tively for unigram queries [14, 1, 10]. However both mech-
anisms rely on the UBEs of the posting lists to be directly
combinable in order to either update a dwindling potential
(as in Maxscore), or provide a cumulative estimate of a sub-
set of terms (as in WAND). All of the field-based models
have a sum or product across the query terms involved, but
each term score is actually a function of a set of term/field
scores. Therefore, in order to calculate a score for term 4,
we must generate sy, r, thru s¢,. Then after generating
st;, the algorithm decides whether to forgo scoring the rest
of the document or continue.

The problem lies in the lack of granularity when looking
for the pruning threshold. Suppose we are using Maxscore
to prune as we score, and we have established at least k
candidates. Therefore R is a bounded number. We move to



(a) (b)

Figure 1: Two different locations for pruning deci-
sions. The small lines indicate where the Maxscore
algorithm checks to stop processing.

score document d. We first generate sq, , as described above.
We make our update: (]3 — (Z)—i— Sq1 — ¢q,. We check that
qg > R and find that the expression is false. The algorithm
skips scoring the remaining terms, and moves to the next
candidate. However if this decision could have been made
after only determining sq, ¢, , we could have saved even more
by not generating the rest of sq,. Under the standard formu-
lation, this is not possible for these models. Fig. 1(a) shows
the current scenario. Recent research by Cartright and Al-
lan suggests that when the Maxscore algorithm only applies
to the higher-level nodes of a layered query, the performance
of the algorithm can be significantly improved if the query
can be “flattened” to provide access to the lower level nodes
[3], therefore we would like to score as in Fig. 1(b). Refor-
mulating a given model into its d-function form allows us
to evaluate documents in such a manner. Hence the name
of these functions — using each one causes a small change
(a delta) to the current estimated score (¢). After applying
each of the functions for a particular document, we arrive at
Sa, the intended score for document d.

3. DERIVING /-FUNCTIONS

We now describe the steps to derive a d-function, and pro-
ceed to derive the d-function for a relatively simple model.
As stated above, we would like to process a document as in
Fig. 1(b), therefore we need a single function for each term-
field pair that can provide the full update to the running
estimate. Using the substitution scheme defined above, we
would like ¢™™ = S4, meaning after n X m substitutions, we
arrive at Sy. We express ¢ as ¢°. Using these equalities,
we can express the transformation of ¢ into S, via a finite
telescoping series:

Sd:(...(qgo+(¢;1_qgo))+...+ (dgnm_qgmm)l)...)

o N G Er ) ®

i=1

The summation form of the series provides a clean analyti-
cal representation of Sy using the potentials. We have ¢° in
hand (recall all documents start with this score), therefore

we need to figure out ((;AﬁZ - éi_l) for any ¢ > 0. This quan-

tity is the core of the d-function. For a given model M, for
a given t, and f, s.t. 1 <u <nand 1 < v < m, we define

O = (9t = 3" ) = 057 Beusu/stur] = 85" (2)

which allows us to rewrite Eq. 1 as

The potential functions (;Aﬁ M are dependent on the model for-
mulation, as they involve substituting in the term scoring
function for that model. In general, the superscript over the
0-function is implied, and we drop it to refer to the generic
form. Note that the only difference between ¢ and ¢*~*
is a single substitution. Our goal, for any given M, is to
determine the effect of that substitution on ¢. Also notice
that ¢, and f, are not defined in terms of the previous sub-
stitutions, but just as adjustments to the current estimate
¢*~'. This means that we may order the §-functions in any
way we like when scoring, and are not required to compose
an entire term score before producing a decidable estimate.

3.1 A Quick Derivation

As a brief example, suppose we have a new field-based
retrieval model SOF, which is just a pair of nested sums
over the term fields, and that we are given an admissible
estimator ¢, r;,. We formulate SOF, and its corresponding
potential, as follows:

n m n m
Sqda = E w; E Sqifjd » PSOF = E w; E bq; f;
i=1 j=1 =1 Jj=1

The exact formulation of sg,f;q is not important. We only
need access to the quantity when scoring d. We set up dsor
as follows:

dsor = ¢ — ¢ =" brur,/Stusea] — O

Noting that ¢'"[¢s, £, /Stu fud) Teduces to simply subtract-
ing ¢, s, from ¢! and then adding s;,f,q4 to it, we can
write a simple closed form for dsor:

" Mbtus, /Stusodl — ¢ =

n m
ol TR
i=1 =1
n m
(2 Z¢> -
i=1 =1

W (8t fod — Ptufn) = 0SOF

We now have a concrete version of dsor we can use to
score. Brief inspection of dsor provides some intuition of
its function. The quantity (s¢, f,a — ¢t f,) is negative, since
Otufo > Sty fod- As we intended, each application of the o-
function reduces the estimate a bit, moving it closer to Sqgad,
until it has been applied for all term and field combinations.

4. REWRITING FIELD-BASED MODELS

We now derive d-functions for three field-based ranking
models. In each case, we determine an admissible UBE



for each term-field pair (e.g. ¢,5,), then we derive the -
function for the given model using that UBE.

4.1 PRMS

The probabilistic retrieval model for semi-structured data
(PRMS) by Kim and Croft [9] is an extension to the language
model family of retrieval algorithms which incorporates field
information into the estimation of relevance. Assuming m
fields and n query terms, the score for a document d is the
likelihood that d would generate the query Q:

Q|d:_H_Z (fila)P(ailf5, d) (3)

where P, is the “mapping probability” that field f; is in-
volved in the relevance estimation, given that g; appeared.
The probability is estimated as follows:

P(qil £;) P(f5)
(f]'ql) kagF (Qz|fk:)

We assume a uniform prior distribution for P(f;). In order
to find dprms, we first make sure we have, or can find, an
admissible estimator for the model. P(g;|f;,d) in Eq. 3 is
a language model estimate using either Dirichlet or Jelinek-
Mercer smoothing. In the terminology introduced in Sec-
tion 2.2.1, P(q|fj,d) is s¢,5;a- Macdonald et al. derived
maz.s as an admissible UBE for this scoring function [10],
and we use that estimator here. We can now define the
potential of PRMS:

¢pras = [ [ D Pulfilai) s, (4)

i=1j=1

Which is the value we start scoring a document from. In
the following, we use w;; to refer to P,(f;]¢:), and let ¢, =
Z;’;l Wij e, f; to simplify the derivation. We start with the
generic form of dprms:

Sprvs = ¢ — 0" =" rur, /Stupea — 0 (5)

Ytu fo /Sty fual. Given the
formulation in Eq. 4, when i # wu, éti is a constant over
the course of the substitution, as we are only replacing the
value for term i in field j. Therefore, the components of
term i+ 1 or term ¢ — 1, for instance, remain unchanged. So
we only need to consider the substitution’s effects on ¢, .
The composite term score is a sum of term/field estimates,
therefore the substitution involves subtracting wyv s, r, and
adding wyvSt,, f,d:

We need to concretely define q@i_

m
Gt Dtufo/Stusod = <Z wuj(ﬁzufj) [Pt fo/Stufud]
j=1

m
- (Z wuj¢tufj> - wu”¢tufv +wuvstuf'ud
=1

= bt, + Wur(St, fud — Drusy)

We now define & = (H:‘L:1 q@ti), the product of all term
estimates, and by extension ®_, = ( A it q@ti), which

is the product of all term estimates, excluding dgtu- Note

that & = ¢EPRMS (the total estimate, possibly with substi-
tutions). This allows us to rewrite Eq. 5 compactly:

¢ =0 brus /Stusua) =0

( ¢tufu)) -

( ¢tufv)) —d_ur,
(¢tu + W (St fod = Prusy) — Qgtu)

= btuts)

6PR]\4

Pty + W (5, f,d

¢tu + Wuo Stufv

=4 -
®_
®_
o

= q)fuwu'u (Stufvd

The result is once again intuitive. Mulitplied out, the weighted
potential ¢¢, s, is removed from the total estimate, while
the actual weighted contribution sy, 7,4 is being added. The
weight is the term/field weight w., multiplied by the re-
maining term estimates. This quantity is fairly compact,
but in implementation it can be difficult to correctly main-
tain ®_,. We can remedy this by involving ¢:, again:

dprMS = PwWuy (Sty fod — Ptufy) =

b, _ (wuv(Stufvd - ¢tufv)>
= Dy Wuv (Sty, fod — Ptut,) = P z
<¢tu> Waw (Stufod = Gruso) oy

We can easily maintain cumulative scores for each term
(i.e. ¢¢,), and we already have access to ®, the total es-
timate. In this form, dpras reduces to multiplying the
current estimate by a small factor. As each replacement is a
small negative number, the total probability slightly drops
as we iterate through the different term/field pairs.

4.2 BM2SF

BM25F is an extension of the BM25 retrieval model. In-
stead of scoring fields independently, the term frequencies
per field are first combined, then scored [13]. We begin by
considering the set of formulae that constitute the BM25F
scoring function:

Ctif;d
St fid = l';]d (6)
(1+ B, (22— 1))
Styd = ZijStifjd (7)
j=
_ St;d .
) L dfs, 8
St;d K+5tidl ift; (8)
BM25F(Q,d) = Y 5,4 9)

where [y, is the average length of field f; across all docu-
ments, Wy, is a field-specific tuning parameter, and I¢;q is
the length of field f; in document d. As before, we first find
an admissible estimate for the term/field scoring function.
In this model, the term/field scoring function corresponds
to Eq. 6.

4.2.1 Finding ¢.s, for BM25F

We would like to create a reasonable admissable estimate
we can make for any term/field pair. We shorten ¢; to t
and f; to f in the following. We use the same technique as
Macdonald et al. [10], and view the problem as a relaxed



CMP. Let x = ctfq, and let y = lyq:

Stfd :—thd = —
(1+ Bs(#4 = 1)) (1+B(# - 1)
(1+Bs(# — 1)) 1+ 52— By

_ x _ x
- -
#-F(I—Bf) ay + 3

where o = By /ly and § = (1—By). We assume both z and y
have lower and upper bounds (e.g. Tmaz is the maximum x
for any document). We would like to maximize s ftd subject
to

e r <y

® Timin < T < Tmax

® Ymin <Y < Ymax

® 0 < Tmin < Tmaz

® 0 < Ymin < Tmaz < Ymaz

This function monotonically increases w.r.t.  and monoton-
ically decreases w.r.t. y, very much like the classic functions
studied before [10]. Given our constraints, this function is
maximized when x = y, since a constraint is that z < y, and
in the case of x < y, we can find a larger value by increasing
z to y. We substitute z for y, and take the derivative w.r.t.
to x to get

ast fd _ ﬂ ( 1 0)

Oz (az + B)?

which is a positive-valued function Vz > 0. Therefore we
can follow the gradient produced in Eq. 10 to increase the
value of x until we reach it’s maximum allowable value as
defined by the CMP. This value is argmax,cp c¢ra, Which
we label as . Based on this derivation, we now have an
admissible estimator for Eq. 6. Therefore, for a given term
and parameter By, we define our estimator as:

-
(5 (5 1)

We now proceed to derive dpnrosr.

Oif

4.3 Deriving 65r25r

Similar to Egs. 6-9, we define potentials for BM25F as
follows:

P, = Zij¢tifj

=1
_ ¢ti :
e, = K+ o, idft,
Y= Z 1/]ti
teqnd

Modifiers described in Section 2.2.1 extend to the 3 quan-
tities defined here. We start with the general version of
0BM25F:

2 a1
dpmasr = @' — @' =

" Mbtus, /Stugal — ¢ (11)

As before, when making a single substitution, all 1[)%. where
i # u are held constant during the substitution, and can be
ignored. This leaves us with:

Spmase = U1, beuto /St fod) — Vi

_ ( ()bti [¢tu,fv/stuf'ud} ’Ldf > — (lef ) =
[ :

K+ ¢t [0t £, /St fod K+ ¢,
( ¢ti [(rbtufu /Stuf'vd} _ ¢ti ) 'Ldf
K+ ¢t [btu 1, /Sturod] K+ ¢, .

(12)

If we consider the semantics of ¢, [¢1,, 1, /Stu fod) W.T.t. BM25F,
we find that the substitution has a similar effect as in the
PRMS case:

Gto[Otuto/Stufodl = Gt + Wi, (Stufud — Stur,)

As both formulae use sums over the fields to generate the
term values, this similarity is expected. Substituting into
Eq. 12, we have:

dBm2sF = idfy, < PruFluw P >

K + (thu + guv K + (thu

where &y = Wy, (St,, fod — o, ). As in the case of dpris,
we must maintain ¢4, for all ¢; € Q. However using this
value it is easy to compute the value of dpnr2sr.

4.4 Divergence From Randomness

The final model we consider is the PL2F variant of the
Divergence From Randomness (DFR) framework. PL2F was
first introduced by Macdonald et al. at TREC 2005 [11].
The PL2F model is formulated as follows:

qi 1 Sq;
S5qQ.a = q;@ ||17|| o+ 1 <5qi log ; + (A —5q;)loge + O.5log(27rsqi)>

(13)

where A = cfy, /|D|, the collection frequency of ¢; divided
by the size of the collection. |g;| is the frequency of ¢; in @,
and |q| is the maximum |g¢;| for any ¢; € Q. All log functions
are in base 2 unless otherwise noted. For this model s;, is
defined as

St; = waj St;f;d , Where (14)
j=1
ly
Stifjd = ctifjdlog 1 + ij lf . (15)
J

where By, is a field-specfic tunable parameter. We assume
that |¢;| = |g| = 1 for all terms in all queries. As before,
we now derive an admissible UBE ¢, 5, before proceeding
to derive 6PL2F-

4.5 Finding ¢.;;, for PL2F

We need to generate an admissible UBE for the term/field
scoring function of PL2F. Using the formulation above, that
is Eq. 15. We begin there:

ly,
Stif;d = Ctifjdlog (1 + ijl J >
f;d



We make the same substitutions as before; let @ = ¢y, f,4a,
and Yy = lijd:

St ;4 = wlog (1+ﬂy_1) (16)

where 3 = By, ls;. Inspection reveals that s, ;¢ monoton-
ically increases with  and monotonically decreases with y.
As before, the maximal contour is the line where z = y: for
any case where x < y, we can increase the value of = to y
to obtain a larger value. We can now substitute x for y to
simplify Eq. 16 and take its derivative:

f(z) = st;1,a = zlog (1 + Bwil)

oy Ostigia 1 Ba"
fi(z) = e =log(1+4B27") — (m)

We need to know the behavior of f'(z),Vz > 0. Substituting
z = Bz~' and taking the derivative again:

of (ST

9z ((1+2)In2)2

We can see that for % > 0,Vz > 0. This means that for all
x > 0, f'(z) and therefore f(z) are also positive. As z — oo,
f(x) grows unbounded. With respect to our constraints, this
function maximizes at argmax ;¢ ¢, f;d, Or Z, as before. We
now have an admissible UBE for PL2F:

ly.
1.5, = Zlog (1 + By, %)
We can now proceed to deriving the d-function.

4.6 DeriVing dpL2F

We first determine the total potential ¢ for PL2F using
the UBE. We define ¢ as:

=%

t,€Q

m
o :waj¢tifj

j=1

¢ti+1 A

We start with the generic formulation of dpror:
Sprar = ¢' = &' = " brs, [stus,a — ST (17)

The substitution takes place at field j for term ¢. Given the
formulation in Eq. 13, terms are calculated independently;
we can ignore the other term quantities as they are con-
stant over the substitution. This makes determination of

¢ [t 1, /51, £,a) Simple:

" Dtutn/Stufud] = Sty + Wuv (St fod — Gruts)

Although the replacement over a term potential is simple,
derivingAa concrete form of the dpror is more involved. Let
iy = GOty [Ptufo/Stufod)- We can now write the terms of
concern in dprar:

Sprar = ¢ — ¢ =" brur, /Stus,a — T =

()thul‘i’ N (qgtu log q:t\“ + (M= <2>tu,) loge + 0.5 10g(27r<;3tu)> -

1
P, +1

(wtu log w;\“ + (A —y,)loge+ 0.510g(27rwtu))

! (sti log 22 + (A —¢¢;)loge+0.5 log(27r¢ti)>

Test Set | # docs | terms | fields | (Tokens/Field) / o

(10%°s) | (10%s) | (1's) (10°’s)
RO5 1.0 484 2 223 / 153.1
TBO06 25.2 | 22,333 3 5,304 / 5,870
OL 39.4 1,418 22 64.4 / 85.2

Table 1: Statistics on the collections used in exper-
iments. The last column shows the average number
of tokens per field for that collection. The second
value in that column is the standard deviation of the
distribution of tokens per field.

In it’s current form the dpr2r function is not very helpful
— for every update we would have to calculate the original
function twice. We can simplify this function somewhat, by
establishing a common denominator between all the terms,
and multiplying the two quantities out. After canceling and
reducing terms, we finally end up with a less wasteful dprar
form:

Spror = B(de, — b, )+
log Y, (t, br, + 0.5¢¢, + e, +0.5)—
log e, (b1, bro, + 0.5%0, + b1, + 0.5)

where 8 = (log A+ Alog e +0.5log 27 4+ log e). This function
is still rather bulky, however optimization of this function to
use fewer operations is beyond the scope of this paper. We
use this form in our implementation, which we now discuss.

S. EXPERIMENTAL SETUP

We conduct experiments over three different data sets: 1)
the TREC Robust 2005 track query set and AQUAINT col-
lection (R05), 2) the TREC Terabyte 2006 track query set,
over the GOV2 document collection (TB06), and 3) a down-
load of the metadata records from the OpenLibrary (OL),
along with a sample of 50 queries from the OpenLibrary
Apache logs. Table 1 contains some statistics about each of
the collections considered. R05 documents have a headline
field, and the body content stored as the text field. The
TBO06 documents have similar fields (title and body), but
have a (anchor) text indexed as an additional field. R05 and
TBO06 provide a relatively standard case of web pages, with
only a few fields of interest, and one of the fields significantly
outweighing the others in terms of content density (i.e. the
body field is significantly bigger than the title or anchor
fields).

The OL records provide a contrastive dataset - there are
22 fields, none of which contain significantly more content
than the rest. The records are community-built, therefore
not all fields are present in all documents. While a proper
characterization of OL is beyond the scope of this paper, the
simple statistics in Table 1 indicate the differing structure
in OL versus R05 and TB06. The average number of tokens
per field is much lower than the other two test sets, and
despite the larger number of fields, the standard deviation
of the number of terms in each field is lower than the other
two collections.

We conduct experiments using an open-source research IR
system?. Bach run was conducted on an Intel Core2 Duo ma-
chine with 4GB RAM, with the index residing on network-

2Name anonymized for review



mounted storage. The operating system used is Linux Cen-
tOS 5. For all experiments, we perform one run to warm up
the system, and then we repeat the same run of queries five
times over. To reduce dependence on query order, we ran-
domize the order of the queries between runs (e.g. from run
1 to run 2). The same randomization seeds are used across
each set of runs (e.g. PRMS and PL2F receive the same
list of seeds), so we can compare the queries in a pairwise
manner. We then take the average of the five timed runs for
each query, and use that average as the representative run
time of the query. All times were measured in milliseconds.
We consider both the latency of a query (time to process
that query), and the throughput of a batch of queries (the
time to process all of the queries). Our implementation is
single-threaded, therefore the throughput is approximately
the sum of the query latencies for a batch of queries.

To get a sense of the stability of these runs, in addition
to the mean, we calculate the coefficient of variation of each
set of query samples. The coefficient of variation is the stan-
dard deviation divided by mean, which provides a normal-
ized measure of dispersion of a distribution. For example, a
value of 0.05 indicates that the standard deviation of a distri-
bution is only 5% of the value of the mean. Smaller numbers
indicate a higher probability that the samples are accurate
measurements of the query’s actual run time. These values
are then aggregated for a collection, to form a distribution
of coefficients. Table 2 shows the quartiles for the distribu-
tions for each collection. The distributions are rather small,
not even going above 0.16 by the 3rd quartile. This suggests
that most of the samples are quite reliable. R05 and TB06
have high-end outliers, however, as the jump from the 3rd
quartile to the maximum value is many times the value of
the 3rd quartile itself. Despite these few outliers, the results
provide us with a good deal of confidence that the timed
runs are samples of good quality. To compare two runs (say

Set Min 1st Q | Median | 3rd Q Mazx

RO5 0.01044 | 0.03233 | 0.05785 | 0.12197 | 0.97532
TBO06 | 0.00563 | 0.04033 | 0.07403 | 0.15820 | 1.49304
OL 0.00829 | 0.04020 | 0.04936 | 0.05922 | 0.10337

Table 2: Different quartiles of the distribution of
coefficients of variation of queries for a particular
test set. All three collections have small deviations,
however R05 and TB06 have high-end outliers, as
indicated by the large jump from the 3rd quartile to
the maximum value.

the original PRMS formulation and dprars), we report the
average drop in query latency as a percentage of the orig-
inal query latency, which we simply refer to as percentage
improvement. Let t4 and tp be times produced by the orig-
inal (A) and modified (B) runs, respectively. We calculate
the percentage improvement as (ta — tB)/tA. Therefore a
value of 0.9 indicates that run B improved over A’s latency
by 90%. A negative value indicates that run B ran longer
than run A. Note that this measure is upper bounded by
1 (i.e. all processing time has been eliminated), but has no
lower bound (the modified run is infinitely slower than the
original). The goal then is to get as close to 1.0 as possible.
We report the percentage improvement for throughput of the
query sets as well. Although throughput tends to be more
informative for larger query sets, nonetheless it provides ad-

RO5 w Thru | p Lat. | # better | # worse
Maxscore 8.8 3.6 26 10
OPRMS 52.6 29.8 35 1
OBM25F 64.4 38.8 35 1
OPL2F 12.6 10.3 36 0
TB06 w Thru | p Lat. | # better | # worse
Maxscore 16.8 2.3 116 34
OPRMS 28.8 21.6 149 1
dBMasF 64.7 47.3 141

OpL2F 16.9 21.0 134 16
OL w Thru | p Lat. | # better | # worse
Maxscore 6.4 5.1 50 0
OPRMS 67.9 25.8 50 0
dBM2sF 66.9 18.8 34 16
OPL2F 2.5 -0.1 19 31

Table 3: Aggregate improvement for the 3 collec-
tions. ‘4 Thru’ refers to mean throughput improve-
ment. ‘u Lat.” refers to mean latency improvement.

ditional information not apparent by just reporting the la-
tency improvements. If the improvement for throughput is
higher than for latency, that implies that the longer queries
in the set were improved more than the average latency re-
duction. We also report the number of queries improved
or worsened compared to the original formulation. We also
report improvement results for the original Maxscore algo-
rithm applied to PRMS, to provide a point of comparison
with a state-of-the-art approach.

We determine statistical sigificance via a two-sample per-
mutation test as described by Efron and Tibshirani [5]. All
results are verified to be statistically significant for p < 0.01
unless otherwise noted. We omit retrieval effectiveness re-
sults, as the pruning algorithms are all verified in theory and
implementation to be safe-to-rank-k.

6. RESULTS

Table 3 shows the percentage improvement on average la-
tency (time to process one query) and throughput (time to
process the entire set of queries). The dprms and dpaosr
implementations signficantly outperform both the original
and Maxscore implementations across all three data sets.
Additionally, the comparison of latency and throughput in-
dicates that the d-function form helps more as the query
takes more time to execute. Therefore, as queries get longer,
the advantage of using J-functions increases. Jdpror has
more modest improvements, although for R05 and TBO06
they are still substantial. We show the by-query percent-
age improvement of dprars compared to PRMS in Fig. 2,
and the same measure for Maxscore compared to PRMS in
Fig. 3. The queries are ordered by decreasing improvement,
which makes the contrast in improvement clear. dprys im-
proves a signficantly larger proportion of queries, and gener-
ally improves them to a much higher degree. The per-query
improvements of the other Jd-functions over TB06 and R05
look similar, but are omitted to save space.

The results over the OL collection are curious. dprwms
and dpam2sr have noticeable latency improvement, but sur-
prisingly high throughput improvement. In constrast, pror
tends to actually worsen the average latency, but has a slight
improvement on throughput. Despite further analysis, the
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Maxscore compared to the original PRMS. Test set
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reason for the poor performance of dpr2r on the OL set is
still unknown. We look forward to investigating this behav-
ior in future work.

6.1 Jprys vs Maxscore

The previous results indicate that in general the d-functions
are more effective at pruning than just using Maxscore. We
now compare dpryms over the original Maxscore algorithm
directly; results are shown in Table 4. Although most of the
results are expected, there are a handful of queries where the
original Maxscore outperforms the dpras implementation,
which is surprising. An brief analysis of these queries does
not reveal any obvious characteristics that would cause such
behavior. Our current hypothesis is that the aggregation
of the term/field nodes into term nodes results in a cleaner
ordering of the quorum members than if the iterators are
ordered at the term/field level. Note that the current order-
ing scheme orders the quorum members based on increasing
document frequency (df), but the potentials are based on
term frequency (tf). Brief statistical analysis shows that df
and tf are not perfectly correlated, therefore it may be possi-

vs Maxscore | p Thru | p Lat. | # better | # worse
RO5 48.0 27.5 35 1
TB06 14.3 7.8 131 19
OL 65.7 21.8 50 0

Table 4: Comparison of dprys to Maxscore over the
3 collections.

RO5 w Thru | w Lat. | # better | # worse
SPRMS 10.4 -5.2 16 20
OBM25F 16.2 -0.4 17 19
OprLoF 18.7 8.0 24 12
TBO06 w Thru | w Lat. | # better | # worse
OPRMS 11.5 -8.5 90 60
0BM25F 17.7 11.3 143 7
OpL2F 4.9 9.2 104 46
OL w Thru | w Lat. | # better | # worse
OPRMS 6.1 5.1 50 0
SBM25F 14.6 1.2 15 35
OpLar 3.2 0.2 25 25

Table 5: Aggregate improvement for the 3 collec-
tions when no pruning occurs.

ble to construct a case where a large number of the iterators
have relatively low df, but they all have high average tf. This
would keep the quorum from omitting any iterators, which
would degrade performance.

6.2 Analysis of Risk

Since J-functions are new implementations of these re-
trieval algorithms, their computational efficiency in isola-
tion is unknown. The results so far are very promising,
but do the newly implemented functions provide any of the
observed speedup, or are they actually a liability? While
unlikely, it is possible to generate a particular query set
such that no query processed by the system can be pruned,
and every candidate must be fully scored. If the -functions
are inefficient, this could lead to significantly worse perfor-
mance than changing nothing. To simulate an adversarial
scenario where pruning does not occur, we force the quourm
to keep all scoring iterators, forcing every candidate to be
fully scored.

Table 5 shows the results of the no pruning simulation.
We do not show Maxscore; with no pruning available, Maxs-
core reduces to the original implementation. Even without
pruning, all of the d-functions make a significant improve-
ment on throughput. The improvement on latency is less
pronounced, once again indicating that §-functions provide
more relative improvement as the query takes longer to pro-
cess. These results indicate that instead of being a liability,
o-functions in themselves are an improvement over the orig-
inal formulation.

7. CONCLUSIONS

We have introduced a new formulation technique for field-
based retrieval models that allows systems to exploit dy-
namic pruning to its fullest. Our results show that direct, it-
erative scoring of a document allows for finer-grained level of
pruning which reduces the execution time of most queries up
to 47%. Additionally, the results indicate that d-functions
scale much better than Maxscore as the number of fields
increases. This property may be critical, the structure of
semi-structured documents is used more and more to im-
prove retrieval effectiveness.

The derivation process of d-functions is not complex. In
the course of this paper we derived the J-function form for
three distinct retrieval models, and realized signficant gains
in retrieval efficiency for each model. Although the work



shown here was for field-based models, the steps for deriv-
ing a § function for a particular model can be applied to
any retrieval model. The simplicity of the process makes it
attractive as a general optimization procedure for various
models. Once a new retrieval model has shown its utility in
retrieval effectiveness, one can simply derive its §-function to
improve its overall performance, without resorting to ad-hoc
solutions.

7.1 Future Work

Although §-functions make considerable improvements for
dynamic optimization for the models covered here, much can
be done to improve them. Many computers today have more
than one processing core; this provides an opportunity for
intra-query parallelism, where various components of a sin-
gle query may be computed by different cores in parallel.
The current derivation process produces a function that is
dependent on the previous function. While this makes cal-
culation of a single J-function simple as we use previous
results, it also means that the current derivation cannot be
easily parallelized in this way. We would like to explore
other versions of these functions that allow parallelization
on a multicore machine.

Currently potential estimations are static over the course
of a query evaluation. Using “topdocs” to improve the re-
trieval efficiency has been shown to greatly cut down scoring
time by providing a warmup to the scored document queue
[2, 14]. In addition to lowering the R value for pruning
algorithms, the potential of each term posting list is low-
ered, as the highest scoring documents are quickly scored
first and do not need to be accounted for when making es-
timating the upper bound. We plan to investigate a similar
technique that can adaptively lower the potential estimates
during scoring. Doing so would trigger pruning earlier and
often during query evaluation.

Finally, we are confident that J-functions can find wider
applicability in the space of retrieval models. As future work
we intend to investigate the applicability of this iterative
scoring method to training scenarios for learning-to-rank.
If we can define a single-step update function for a given
model, it could drastically reduce the computational effort
needed to perform search during parameter optimization.
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