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ABSTRACT

In recent years, deep neural networks have led to exciting
breakthroughs in speech recognition, computer vision, and
natural language processing (NLP) tasks. However, there
have been few positive results of deep models on ad-hoc re-
trieval tasks. This is partially due to the fact that many
important characteristics of the ad-hoc retrieval task have
not been well addressed in deep models yet. Typically, the
ad-hoc retrieval task is formalized as a matching problem
between two pieces of text in existing work using deep mod-
els, and treated equivalent to many NLP tasks such as para-
phrase identification, question answering and automatic con-
versation. However, we argue that the ad-hoc retrieval task
is mainly about relevance matching while most NLP match-
ing tasks concern semantic matching, and there are some
fundamental differences between these two matching tasks.
Successful relevance matching requires proper handling of
the exact matching signals, query term importance, and di-
verse matching requirements. In this paper, we propose a
novel deep relevance matching model (DRMM) for ad-hoc
retrieval. Specifically, our model employs a joint deep archi-
tecture at the query term level for relevance matching. By
using matching histogram mapping, a feed forward matching
network, and a term gating network, we can effectively deal
with the three relevance matching factors mentioned above.
Experimental results on two representative benchmark col-
lections show that our model can significantly outperform
some well-known retrieval models as well as state-of-the-art
deep matching models.
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1. INTRODUCTION
Machine learning methods have been successfully applied

to information retrieval (IR) in recent years. Typically, a
ranking function which produces a relevance score given a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CIKM’16 , October 24-28, 2016, Indianapolis, IN, USA

c© 2016 ACM. ISBN 978-1-4503-4073-1/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2983323.2983769

query and document pair is learned based on a set of hu-
man defined features. However, handcrafting features can
be time-consuming, incomplete and over-specified. On the
other hand, deep neural networks, as a representation learn-
ing method, are able to discover from the training data the
hidden structures and features at different levels of abstrac-
tion that are useful for the tasks. Recently, deep models
have been applied to a variety of applications in computer
vision [16], speech recognition [10] and NLP [25, 17], and
have yielded significant performance improvements. Given
the success of deep learning in these domains, it seems that
deep learning should have a major impact on IR. However,
there have been few positive results of deep models on IR
tasks, especially ad-hoc retrieval tasks, until now.

Without loss of generality, when applying deep models to
ad-hoc retrieval, the task is typically formalized as a match-
ing problem between two pieces of text (i.e., the query and
document). Such a matching problem formalization is often
considered general in the sense that it can cover both ad-hoc
retrieval tasks as well as many NLP tasks such as paraphrase
identification, question answering (QA), and automatic con-
versation [17, 11]. A variety of deep matching models have
been proposed to solve this matching problem, which can be
categorized into two types according to their model architec-
ture. One is the representation-focused model, which tries
to build a good representation for a single text with a deep
neural network, and then conducts matching between the
compositional and abstract text representations. Examples
include DSSM [12], C-DSSM [23, 8] and ARC-I [11]. The
other is the interaction-focused model, which first builds lo-
cal interactions (i.e., local matching signals) between two
pieces of text, and then uses deep neural networks to learn
hierarchical interaction patterns for matching. Examples in-
clude DeepMatch [17], ARC-II [11] and MatchPyramid [19].

However, in this work, we argue that the matching prob-
lems in many NLP tasks and the ad-hoc retrieval task are
fundamentally different. Most NLP tasks concern semantic
matching, i.e., identifying the semantic meaning and infer-
ring the semantic relations between two pieces of text, while
the ad-hoc retrieval task is mainly about relevance match-
ing, i.e., identifying whether a document is relevant to a
given query. We point out three major differences between
these two matching problems which may lead to significantly
different architecture design for the deep matching mod-
els. We also show that most existing deep matching models
are designed for semantic matching rather than relevance
matching.

Based on these differences, we propose a deep relevance



Figure 1: Two types of deep matching models: (a) Representation-focused models employ a Siamese (symmet-
ric) architecture over the text inputs; (b) Interaction-focused models employ a hierarchical deep architecture
over the local interaction matrix.

matching model (DRMM) for ad-hoc retrieval by explic-
itly modeling the three major factors in relevance matching.
Overall, our model is an interaction-focused model which
employs a joint deep architecture at the query term1 level for
relevance matching. Specifically, we first build local interac-
tions between each pair of terms from a query and a docu-
ment based on term embeddings. For each query term, we
map the variable-length local interactions into a fixed-length
matching histogram. Based on this fixed-length matching
histogram, we then employ a feed forward matching net-
work to learn hierarchical matching patterns and produce a
matching score. Finally, the overall matching score is gen-
erated by aggregating the scores from each query term with
a term gating network computing the aggregation weights.
We show how our major model designs, including match-
ing histogram mapping, a feed forward matching network,
and a term gating network, address the three key factors in
relevance matching for ad-hoc retrieval.

We evaluate the effectiveness of the proposed DRMM based
on two representative ad-hoc retrieval benchmark collec-
tions. For comparison, we take into account some well-
known traditional retrieval models, as well as several state-
of-the-art deep matching models either designed for the gen-
eral matching problem or proposed specifically for the ad-
hoc retrieval task. The empirical results show that the ex-
isting deep matching models cannot compete with the tradi-
tional retrieval models on these benchmark collections, while
our model can outperform all the baseline models signifi-
cantly in terms of all the evaluation metrics.

The major contributions of this paper include:

1. We point out three major differences between semantic
matching and relevance matching, which may lead to
significantly different architecture design of the deep
matching models.

2. We propose a novel deep relevance matching model for
ad-hoc retrieval by explicitly addressing the three key
factors of relevance matching.

3. We conduct rigorous comparisons over state-of-the-art
retrieval models on benchmark collections and analyze
the deficiencies of existing deep matching models and
advantages of the DRMM.

1Here we use term to denote the indexed units in search
systems, which could be stemmed words or phrases.

2. AD-HOC RETRIEVAL AS A MATCHING

PROBLEM
According to existing literature [12, 17], the core problem

in ad-hoc retrieval, i.e., the computation of the relevance for
a document given a particular query, can be formalized as a
text matching problem as follows. Given two texts T1 and
T2, the degree of matching is typically measured as a score
produced by a scoring function based on the representation
of each text:

match(T1, T2) = F (Φ(T1),Φ(T2)),

where Φ is a function to map each text to a representation
vector, and F is the scoring function based on the inter-
actions between them. Such a text matching problem is
considered general since it also describes many NLP tasks,
such as paraphrase identification, question answering, and
automatic conversation [17, 11]. A variety of deep match-
ing models have been proposed either for the specific ad-hoc
retrieval task or for the general matching problem.

Depending on how you choose the two functions, existing
deep matching models can be categorized into two types.
The first one, the representation-focused model, tries to
build a good representation for a single text with a deep
neural network, and then conducts matching between two
compositional and abstract text representations. In this
approach, Φ is a complex representation mapping function
while F is a relatively simple matching function. For exam-
ple, in DSSM [12], Φ is a feed forward neural network, while
F is the cosine similarity function. In C-DSSM [23, 8], Φ is
a convolutional neural network (CNN) [16], while F is the
cosine similarity function. In ARC-I [11], Φ is a CNN, while
F is a multi-layer perceptron (MLP). Without loss of gen-
erality, all the model architectures of representation-focused
models can be viewed as a Siamese (symmetric) architecture
over the text inputs, as shown in Figure 1(a).

The second one, the interaction-focused model, first builds
the local interactions between two texts based on some ba-
sic representations, and then uses deep neural networks to
learn the hierarchical interaction patterns for matching. In
this approach, Φ is usually a simple mapping function while
F is a complex deep model. For example, in DeepMatch [17],
Φ simply maps each text to a sequence of words, while F is a
feed forward neural network powered by a topic model over
the word interaction matrix. In ARC-II [11] and MatchPyra-
mid [19], Φ maps each text to a sequence of word vectors,



while F is a CNN over the interaction matrix between word
vectors from the two texts. Without loss of generality, all
the model architectures of interaction-focused models can
be viewed as a hierarchical deep architecture over the local
interaction matrix, as shown in Figure 1(b).

Although various deep matching models have been pro-
posed under such a general matching problem formalization,
most of them have only been demonstrated to be effective on
a set of NLP tasks such as paraphrase identification and QA
[11, 26]. There have been few positive results on the ad-hoc
retrieval task. Even the deep models specially designed for
Web search, e.g., DSSM and C-DSSM, were only evaluated
on <query, doc title> pairs which are not a typical ad-hoc
retrieval setting. If we directly apply these deep matching
models on some benchmark retrieval collections, e.g. TREC
collections, we find relatively poor performance compared to
traditional ranking models, such as the language model [31]
and BM25 [22]. All these observations raise some questions
such as: Is matching in ad-hoc retrieval really the same as
that in NLP tasks? Are the existing deep matching models
suitable for the ad-hoc retrieval task?

3. SEMANTIC MATCHING VS. RELEVANCE

MATCHING
In this section, we discuss the differences between text

matching in ad-hoc retrieval and other NLP tasks. The
matching in many NLP tasks, such as paraphrase identi-
fication, question answering and automatic conversation, is
mainly concerned with semantic matching, i.e., identifying
the semantic meaning and inferring the semantic relations
between two pieces of text. In these semantic matching
tasks, the two texts are usually homogeneous and consist of
a few natural language sentences, such as questions/answer
sentences, or dialogs. To infer the semantic relations be-
tween natural language sentences, semantic matching em-
phasizes the following three factors:

Similarity matching signals: It is important, or crit-
ical to capture the semantic similarity/relatedness between
words, phrases and sentences, as compared with exact match-
ing signals. For example, in paraphrase identification, one
needs to identify whether two sentences convey the same
meaning with different expressions. In automatic conversa-
tion, one aims to find a proper response semantically related
to the previous dialog, which may not share any common
words or phrases between them.

Compositional meanings: Since texts in semantic match-
ing usually consist of natural language sentences with gram-
matical structures, it is more beneficial to use the compo-
sitional meaning of the sentences based on such grammati-
cal structures rather than treating them as a set/sequence
of words [25]. For example, in question answering, most
questions have clear grammatical structures which can help
identify the compositional meaning that reflects what the
question is about.

Global matching requirement: Semantic matching
usually treats the two pieces of text as a whole to infer the
semantic relations between them, leading to a global match-
ing requirement. This is partially related to the fact that
most texts in semantic matching have limited lengths and
thus the topic scope is concentrated. For example, two sen-
tences are considered as paraphrases if the whole meaning
is the same, and a good answer fully answers the question.

The matching in ad-hoc retrieval, on the contrary, is mainly
about relevance matching, i.e., identifying whether a docu-
ment is relevant to a given query. In this task, the query is
typically short and keyword based, while the document can
vary considerably in length, from tens of words to thousands
or even tens of thousands of words. To estimate the rele-
vance between a query and a document, relevance matching
is focused on the following three factors:

Exact matching signals: Although term mismatch is
a critical problem in ad-hoc retrieval and has been tackled
using different semantic similarity signals, the exact match-
ing of terms in documents with those in queries is still the
most important signal in ad-hoc retrieval due to the indexing
and search paradigm in modern search engines. For exam-
ple, Fang and Zhai [7] proposed the semantic term match-
ing constraint which states that matching an original query
term exactly should always contribute no less to the rele-
vance score than matching a semantically related term mul-
tiple times. This also explains why some traditional retrieval
models, e.g., BM25, can work reasonably well purely based
on exact matching signals.

Query term importance: Since queries are mainly short
and keyword based without complex grammatical structures
in ad-hoc retrieval, it is important to take into account
term importance, while the compositional relation among
the query terms is usually the simple “and” relation in oper-
ational search. For example, given the query “bitcoin news”,
a relevant document is expected to be about “bitcoin” and
“news”, where the term “bitcoin” is more important than
“news” in the sense that a document describing other as-
pects of “bitcoin” would be more relevant than a document
describing “news” of other things. In the literature, there
have been many formal studies on retrieval models showing
the importance of term discrimination [5, 6].

Diverse matching requirement: In ad-hoc retrieval, a
relevant document can be very long and there have been dif-
ferent hypotheses concerning document length [22] in the lit-
erature, leading to a diverse matching requirement. Specif-
ically, the Verbosity Hypothesis assumes that a long docu-
ment is like a short document, covering a similar scope but
with more words. In this case, the relevance matching might
be global if we assume short documents have a concentrated
topic. On the contrary, the Scope Hypothesis assumes a long
document consists of a number of unrelated short documents
concatenated together. In this way, the relevance matching
could happen in any part of a relevant document, and we
do not require the document as a whole to be relevant to a
query.

As we can see, there are significant differences between
relevance matching in ad-hoc retrieval and semantic match-
ing in many NLP tasks. These differences affect the design
of deep model architectures and it may be difficult to find a
“one-fit-all” solution to such different matching problems. If
we revisit the existing deep matching models, we find that
most of them concern semantic matching rather than rel-
evance matching. For example, the representation-focused
models such as DSSM, C-DSSM and ARC-I focus on the
compositional meaning of the texts and fit the global match-
ing requirement. In these models, detailed matching signals
and, especially, exact matching signals are lost since they
defer the interaction between two texts until their individ-
ual representations have been created [11]. Although the
interaction-focused models such as DeepMatch, ARC-II and



Figure 2: Architecture of the Deep Relevance Matching Model.

MatchPyramid preserve both exact and similarity match-
ing signals, they do not differentiate these signals but treat
them as equally important. These models focus on learn-
ing the composition of local interactions without addressing
term importance. In particular, the convolutional structures
in ARC-II and MatchPyramid are designed to learn posi-
tional regularities, which may work well under the global
matching requirement but fail under the diverse matching
requirement.(There is more discussion on this in Section 4.)

4. DEEP RELEVANCE MATCHING MODEL
Based on the above analysis, we propose a novel deep

matching model specifically designed for relevance matching
in ad-hoc retrieval by explicitly addressing the three factors
described in Section 3. We refer to our model as a deep rele-
vance matching model (DRMM). Overall, our model is simi-
lar to interaction-focused models rather than representation-
focused models since the latter would inevitably lose the
detailed matching signals which are critical for relevance
matching in ad-hoc retrieval.

Specifically, our model employs a joint deep architecture
at the query term level over the local interactions between
query and document terms for relevance matching. We first
build local interactions between each pair of terms from a
query and a document based on term embeddings. For each
query term, we then transform the variable-length local in-
teractions into a fixed-length matching histogram. Based on
the fixed-length matching histogram, we employ a feed for-
ward matching network to learn hierarchical matching pat-
terns and produce a matching score for each query term.
Finally, the overall matching score is generated by aggregat-
ing the scores from each single query term with a term gat-
ing network computing the aggregation weights. The model
architecture is depicted in Figure 2.

More formally, suppose both query and document are rep-

resented as a set of term vectors denoted by q={w
(q)
1 , . . . , w

(q)
M }

and d = {w
(d)
1 , . . . , w

(d)
N }, where w

(q)
i , i = 1, . . . ,M and

w
(d)
j , j = 1, . . . , N denotes a query term vector and a docu-

ment term vector, respectively, and s denotes the final rele-
vance score, we have

z
(0)
i = h(w

(q)
i ⊗ d), i= 1, . . . ,M

z
(l)
i = tanh(W (l)

z
(l−1)
i + b

(l)), i= 1, . . . ,M, l= 1, . . . , L

s =

M∑

i=1

giz
(L)
i

where ⊗ denotes the interaction operator between a query
term and the document terms, h denotes the mapping func-

tion from local interactions to matching histogram, z
(l)
i , l =

0, . . . , L denotes the intermediate hidden layers for the i-th
query term, and gi, i = 1, . . . ,M denotes the aggregation
weight produced by the term gating network. W (l) denotes
the l-th weight matrix and b

(l) denotes the l-th bias term,
which are shared across different query terms. Note that we
adopt cosine similarity, a widely used measure for semantic
closeness in neural embeddings [18, 20], as the interaction
operator between each pair of term vectors from a query
and a document. In our work, we assume the term vectors
are learned a priori using existing neural embedding models
such as Word2Vec [18]. We do not learn term vectors in our
deep relevance matching model for the following reasons: 1)
Reliable term representations can be better acquired from
large scale unlabeled text collections rather than from the
limited ground truth data for ad-hoc retrieval; 2) By using
the a priori learned term vectors, we can focus the learning
of our model on relevance matching patterns and consider-
ably reduce the model complexity. In the following, we will
describe the major components of our model, including the
matching histogram mapping, feed forward matching net-
work, and term gating network in detail, and discuss how
they address the three key factors of relevance matching in
ad-hoc retrieval.

Matching Histogram Mapping: The input of our deep
relevance matching model is the local interactions between
each pair of terms from a query and a document. A ma-
jor problem is that the size of local interactions is not fixed



due to the varied lengths of queries and documents. Previ-
ous interaction-based models view the local interactions as
a matching matrix by preserving the sequential term orders
in both queries and documents. Clearly the matching ma-
trix is a position preserving representation, which is useful
if the learning task is position related. However, according
to the diverse matching requirement, relevance matching is
not position related since it could happen in any position
in a long document. Thus the matching matrix may not
be a suitable representation for ad-hoc retrieval due to the
potentially noisy positional signals in it.

In our work, we adopt a strength preserving representa-
tion, namely a matching histogram, which groups local in-
teractions according to different levels of signal strengths
rather than their positions. Specifically, since the local in-
teraction (i.e., cosine similarity between term vectors) is
within the interval [−1, 1], we discretize the interval into
a set of ordered bins and accumulate the count of local in-
teractions in each bin. In this work, we consider fixed bin
size and treat exact matching as a separate bin. Other dis-
cretization schemes could be explored in future work. For
example, suppose the bin size is set as 0.5, we will obtain
five bins {[−1,−0.5), [−0.5,−0), [0, 0.5), [0.5, 1), [1, 1]} in an
ascending order. Given a query term “car” and a docu-
ment (car, rent, truck, bump, injunction, runway), and the
corresponding local interactions based on cosine similarity
are (1, 0.2, 0.7, 0.3,−0.1, 0.1), we will obtain a matching his-
togram as [0, 1, 3, 1, 1]. We explore three ways of the match-
ing histogram mapping:

Count-based Histogram (CH): This is the simplest way
of transformation as described above which directly
takes the count of local interactions in each bin as the
histogram value.

Normalized Histogram (NH): We normalize the count
value in each bin by the total count to focus on the
relative rather than the absolute number of different
levels of interactions.

LogCount-based Histogram (LCH): We apply logarithm
over the count value in each bin, both to reduce the
range, and to allow our model to more easily learn
multiplicative relationships [1].

We compare our matching histogram representation with
previous matching matrix representations to show the ad-
vantages. Firstly, by setting exact matching as a separate
bin, the matching histogram clearly distinguishes the exact
matching signals from similarity matching signals, while in
a matching matrix all the signals are mixed together. Sec-
ondly, to solve the problem of variable size in the matching
matrix, a zero-padding scheme is often adopted in previous
methods [11]. However, the zero-padding scheme introduces
additional interaction signals which may be unfair for short
documents. In contrast, we map the variable-size interac-
tions into a fixed-length matching histogram without intro-
ducing any additional signals.

Feed forward Matching Network: Based on the match-
ing histogram above, we employ a feed forward matching
network to learn the hierarchical matching patterns and pro-
duce a matching score for each query term. Since our model
follows the approach of interaction-focused models, we dis-
cuss the major differences between the learning of our feed

forward matching network and that in previous interaction-
focused models.

Existing interaction-focused models, e.g., ARC-II andMatch-
Pyramid, employ a CNN to learn hierarchical matching pat-
terns over the matching matrix. These models are basically
position-aware using convolutional units with a local “recep-
tive field” and learning positional regularities in matching
patterns. This may be suitable for the image recognition
task, and work well on semantic matching problems due to
the global matching requirement (i.e., all the positions are
important). However, it may not be suitable for the ad-hoc
retrieval task, since such positional regularity may not exist
in relevance matching due to the diverse matching require-
ment discussed in Section 3. Besides, since CNN parame-
ters are position related, these models will treat both exact
matching and similarity matching signals equally.

Our deep relevance matching model, on the contrary, aims
to extract hierarchical matching patterns from different lev-
els of interaction signals rather than different positions. The
position-free and strength-focused property makes it bet-
ter at handling the diverse matching requirement in ad-
hoc retrieval. Meanwhile, since the matching histogram di-
rectly distinguishes exact matching signals from the rest, our
model can naturally learn the importance of exact matching
signals.

There have been some interaction-focused models that
employ special pooling strategies to turn the position-aware
interactions into strength-based fixed-length representations.
For example, MV-LSTM [26] used K-max pooling strategy
[13] to select the top K strongest interaction signals from
the matching matrix as the input of a MLP. However, such
a pooling strategy simply truncates the signals and thus will
be strongly biased to long documents since it is more likely
for long documents to contain more strong signals. The
pooling strategy is applied over the entire matching matrix
in MV-LSTM, making it possible that the top K strongest
signals all come from the interactions between a single query
term and the document terms. In contrast, our model does
not rely on any pooling strategy to truncate the interactions
so that we can avoid these problems.

Term Gating Network: One significant difference of
our model from existing interaction-focused models is that
we employ a joint deep architecture at the query term level.
In this way, our model can explicitly model query term im-
portance. This is achieved by using the term gating network,
which produces an aggregation weight for each query term
controlling how much the relevance score on that query term
contributes to the final relevance score. Specifically, we em-
ploy the softmax function as the gating function.

gi =
exp(wgx

(q)
i )

∑M

j=1 exp(wgx
(q)
j )

, i = 1, . . . ,M,

where wg denotes the weight vector of the term gating net-

work and x
(q)
i , i = 1, . . . ,M denotes the i-th query term

input. We tried different inputs for the gating function as
follows:

Term Vector (TV): Inspired by the work [32] where
term embeddings can be leveraged to learn the term weights
in queries, we use query term vectors as the input of the

gating function. In this method, x
(q)
i denotes the i-th query

term vector, and wg is a weight vector with the same di-
mensionality of term vectors.



Inverse Document Frequency (IDF): An important
signal of term importance in ad-hoc retrieval is the inverse
document frequency. We also tried this simple but powerful

signal in the gating function. In this method, x
(q)
i denotes

the inverse document frequency of the i-th query term, and
wg reduces to a single parameter.

4.1 Model Training
Since the ad-hoc retrieval task is fundamentally a ranking

problem, we employ a pairwise ranking loss such as hinge
loss to train our deep relevance matching model. Given a
triple (q, d+, d−), where document d+ is ranked higher than
document d− with respect to query q, the loss function is
defined as:

L(q, d+, d−; Θ) = max(0, 1− s(q, d+) + s(q, d−))

where s(q, d) denotes the predicted matching score for (q, d),
and Θ includes the parameters for the feed forward match-
ing network and those for the term gating network. The op-
timization is relatively straightforward with standard back-
propagation [29]. We apply stochastic gradient descent method
Adagrad [4] with mini-batches (20 in size), which can be
easily parallelized on single machine with multi-cores. For
regularization, we find that the early stopping [9] strategy
works well for our model.

5. EXPERIMENTS
In this section, we conduct experiments to demonstrate

the effectiveness of our proposed model.

5.1 Data Sets
To conduct experiments, we use two TREC collections,

Robust04 and ClueWeb-09-Cat-B. The details of the two
collections are provided in Table 1. As we can see, they
represent different sizes and genres of heterogeneous text
collections. Robust04 is a small news dataset. Its topics
are collected from TREC Robust Track 2004. ClueWeb-09-
Cat-B, on the other hand, is a large Web collection, whose
topics are accumulated from TREC Web Tracks 2009, 2010,
and 2011. Note that ClueWeb-09-Cat-B is filtered to the set
of documents with spam scores in the 60th percentile, us-
ing the Waterloo Fusion spam scores [3]. For both datasets,
we made use of both the title and the description of each
TREC topic in our experiments. The retrieval experiments
described in this section are implemented using the Galago
Search Engine2. During indexing and retrieval, both doc-
uments and query words are white-space tokenized, lower-
cased, and stemmed using the Krovetz stemmer [15]. Stop-
word removal is performed on query words during retrieval
using the INQUERY stop list [2].

5.2 Baselines and Experimental Settings
We adopt three types of baseline methods for compari-

son, including traditional retrieval models, representation-
focused deep matching models and interaction-focused deep
matching models. Traditional retrieval models include

QL: Query likelihood model based on Dirichlet smoothing
[31] is one of the best performing language models.

BM25: The BM25 formula [22] is another highly effec-
tive retrieval model that represents the classical probabilistic
retrieval model.

2http://www.lemurproject.org/galago.php

Table 1: Statistics of the TREC collections used in
this study. The ClueWeb-09-Cat-B collection has
been filtered to the set of documents in the 60th per-
centile of spam scores.

Robust04 ClueWeb-09-Cat-B
Vocabulary 0.6M 38M

Document Count 0.5M 34M
Collection Length 252M 26B

Query Count 250 150

Representation-focused deep matching models include
DSSMT/DSSMD: DSSM [12] is a state-of-the-art deep

matching model for Web search. In the original paper,
the model was evaluated based on <query, doc title> pairs
where doc title is extracted from the title field. We denote
this model as DSSMT . Since other baseline models and our
model are based on the full text of the documents, we also
evaluated the DSSM model under the same setting, denoted
by DSSMD. Since DSSM needs large scale training data
due to its huge parameter size, we directly used the released
model3 (trained on large click-through dataset) in our ex-
periments.

C-DSSMT/C-DSSMD: C-DSSM [23, 8] is a similar
deep matching model to DSSM for Web search, replacing
the feed forward neural network with a convolutional neural
network. For the same reason as DSSM, we also made use of
the released model3 directly and adopt two versions of the
C-DSSM model, one based on title fields of documents de-
noted as C-DSSMT and the other based the whole document
denoted as C-DSSMD.

ARC-I: ARC-I [11] is a general representation-focused
deep matching model that has been tested on a set of NLP
tasks including sentence completion, response matching, and
paraphrase identification. We implemented the ARC-I model
according to the original paper since there is no publicly
available code.

Interaction-focused deep matching models are as follows:
ARC-II: ARC-II [11] was proposed by the authors of the

model ARC-I, but focuses on learning hierarchical matching
patterns from local interactions using a CNN. We also im-
plemented ACR-II since there is no publicly available code.

MP: MatchPyramid [19] is another state-of-the-art inter-
action-focused deep matching model and has been tested on
two NLP tasks including paraphrase identification and pa-
per citation matching. There are three variants of the model
based on different interaction operators, denoted as MPIND,
MPCOS , and MPDOT . We obtained the original implemen-
tation of the model from the authors for comparison.

We refer to our proposed deep relevance matching model
as DRMM. With different types of histogram mapping
functions (i.e., CH, NH and LCH) and term gating func-
tions (i.e., TV and IDF), we obtained six different variants
of our proposed model. For example, by DRMMCH×IDF

we refer to DRMM with Count-based histogram and term
gating network using inverse document frequency.

Term Embeddings: For all the models based on term
embedding inputs, including ARC-I, ARC-II, MatchPyra-
mid and DRMM, we used 300-dimensional term vectors trained
with the Continuous Bag-of-Words (CBOW) Model [18] on

3http://research.microsoft.com/en-
us/downloads/731572aa-98e4-4c50-b99d-ae3f0c9562b9/



the Robust04 and ClueWeb-09-Cat-B collections, respec-
tively. Specifically, we used 10 as the context window size
and used 10 negative samples and a subsampling of fre-
quent words with sampling threshold of 10−4 as suggested
by Word2Vec4. Each corpus was pre-processed by remov-
ing HTML tags and stemming. We also discarded from the
vocabulary all the terms that occur less than 10 times in
the corpus, which resulted in a vocabulary of size 0.1M and
4.1M on the Robust04 and ClueWeb-09-Cat-B collections,
respectively. To address the out-of-vocabulary (OOV) terms
(i.e., some rare terms or numbers not trained by CBOW) in
queries, we follow the practice in previous work [14] to only
allow exact matching between such query terms and docu-
ment terms.

Network Configurations: For network configurations
(e.g., numbers of layers and hidden nodes), we tune the hy-
per parameters on a validation set (as part of the training
set). For ARC-I, ARC-II and MatchPyramid, we tried both
the default configurations in their original paper and other
settings. We find that models with less layers and feature
maps perform better, probably due to the limited training
data in TREC collections. Specifically, for ARC-I and ARC-
II, we use 3-word windows, 64 feature maps and 6 layers (two
for convolutions, two for max-pooling and two full connec-
tion). For MatchPyramid, we use one convolutional layer,
one dynamic pooling layer and two full connection layers.
The number of feature maps is 8 and the kernel size is set to
be 3× 3. For DRMM, we also use a four-layer architecture
throughout all experiments, i.e., one histogram input layer
(30 nodes), two hidden layers in the feed forward matching
network (5 nodes and 1 node respectively), and one output
layer (1 node) with the term gating network for the final
matching score.

5.3 Evaluation Methodology
Given the limited number of queries for each collection,

we conduct 5-fold cross-validation to minimize over-fitting
without reducing the number of learning instances. Topics
for each collection are randomly divided into 5 folds. The
parameters for each model are tuned on 4-of-5 folds. The
final fold in each case is used to evaluate the optimal param-
eters. This process is repeated 5 times, once for each fold.
Mean average precision (MAP) is the optimized metric for
all retrieval models. Throughout this paper each displayed
evaluation statistic is the average of the five fold-level evalua-
tion values. For evaluation, the top-ranked 1, 000 documents
are compared using the mean average precision (MAP), nor-
malized discounted cumulative gain at rank 20 (nDCG@20),
and precision at rank 20 (P@20). Statistical differences be-
tween models are computed using the Fisher randomization
test [24] (α = 0.05). Note that for all the deep matching
models, we adopt a re-ranking strategy for efficient compu-
tation. An initial retrieval is performed using the QL model
to obtain the top 2, 000 ranked documents. We then use
the deep matching models to re-rank these top results. The
top-ranked 1, 000 documents are then used for comparison.

5.4 Retrieval Performance and Analysis
This section presents the performance results of different

retrieval models over the two benchmark datasets. A sum-
mary of results is displayed in Table 2.

4https://code.google.com/p/word2vec/

As we can see, all the representation-focused models per-
form significantly worse than the traditional retrieval mod-
els, demonstrating the unsuitability of these models for rel-
evance matching. Both DSSMT and C-DSSMT can work
better than their counterpart on the whole document on
ClueWeb-09-Cat-B, showing that models designed for global
matching requirement cannot handle the diverse matching
requirement in long documents. Note that we do not re-
port the performance of DSSMT and C-DSSMT on Robust04
since there is no title field in many subsets in this collection.
The ARC-I model, although trained on the corresponding
corpus, performs even worse than DSSM and C-DSSM. A
possible reason is that ARC-I concatenates the query and
document representation for computing the matching score,
which may be less effective than the cosine function in DSSM
and C-DSSM.

When we look at the interaction-focused models, we find
that these baseline models cannot compete with the tradi-
tional retrieval models either. Among these models, ARC-II
can outperform ARC-I by directly learning from local in-
teractions, but performs worse than MatchPyramid models
due to the indirect local interactions (i.e., local interaction
is based on the weighted sum of query and document term
vectors rather than cosine similarity or dot product), which
is consistent with previous results in [11, 19]. Moreover,
the best performing interaction-focused model, MPCOS , can
consistently outperform all the representation-focused mod-
els on both test collections. When comparing the Match-
Pyramid models, we find that both MPIND and MPCOS per-
form much better than MPDOT . Note that MPIND is purely
based on exact matching signals, MPCOS and MPDOT in-
volve both exact and similarity matching signals where exact
matching signals are always stronger than similarity signals
in MPCOS, but this may not be true in MPDOT . The per-
formance gap between MPDOT and the other two MPs in-
dicates the importance of the exact matching signals in rel-
evance matching. In fact, when evaluated on the semantic
matching tasks in [19], MPDOT performed better than the
other two MPs even though it cannot differentiate the exact
matching signals from the rest, demonstrating the signifi-
cant differences between semantic matching and relevance
matching.

As for our proposed DRMMs, we have the following ob-
servations: (1) NH-based models perform significantly worse
than CH-based models, while LCH-based models achieve the
best performance on both collections. The low performance
of NH-based models may be related to the loss of document
length information after normalization which is important
in ad-hoc retrieval [6]. Meanwhile, the good performance
of LCH-based models indicates that deep neural networks
can benefit from input signals with reduced range and non-
linear transformation useful for learning multiplicative re-
lationships [1]; (2) The term gating function based on in-
verse document frequency works better than that based on
term vectors. There are two possible reasons for this result.
Firstly, term vectors do not contain sufficient information for
the term importance. Secondly, the learning of the model
might be dominated by the term gating network when we
use term vectors as the input since there are more parame-
ters (i.e., 300 parameters) in the gating network compared
to the feed forward matching network (i.e., 155 parameters).

Finally, we can see that the best performing DRMM (i.e.,
DRMMLCH×IDF ) is significantly better than all the existing



Table 2: Comparison of different retrieval models over the Robust-04 and ClueWeb-09-Cat-B collections.
Significant improvement or degradation with respect to QL is indicated (+/-) (p-value ≤ 0.05).

Robust-04 collection

Topic titles Topic descriptions
Model Type Model Name MAP nDCG@20 P@20 MAP nDCG@20 P@20

Traditional Retrieval
Baselines

QL 0.253 0.415 0.369 0.246 0.391 0.334
BM25 0.255 0.418 0.370 0.241 0.399 0.337

Representation-Focused
Matching Baselines

DSSMD 0.095− 0.201− 0.171− 0.078− 0.169− 0.145−

CDSSMD 0.067− 0.146− 0.125− 0.050− 0.113− 0.093−

ARC-I 0.041− 0.066− 0.065− 0.030− 0.047− 0.045−

Interaction-Focused
Matching Baselines

ARC-II 0.067− 0.147− 0.128− 0.042− 0.086− 0.074−

MPIND 0.169− 0.319− 0.281− 0.067− 0.142− 0.118−

MPCOS 0.189− 0.330− 0.290− 0.094− 0.190− 0.162−

MPDOT 0.083− 0.159− 0.155− 0.047− 0.104− 0.092−

Our Approach

DRMMCH×TV 0.253 0.407 0.357 0.247 0.404 0.341
DRMMNH×TV 0.160− 0.293− 0.258− 0.132− 0.217− 0.186−

DRMMLCH×TV 0.268+ 0.423 0.381 0.265+ 0.423+ 0.360+

DRMMCH×IDF 0.259 0.412 0.362 0.255 0.410+ 0.344
DRMMNH×IDF 0.187− 0.312− 0.282− 0.145− 0.243− 0.199−

DRMMLCH×IDF 0.279+ 0.431+ 0.382+ 0.275+ 0.437+ 0.371+

ClueWeb-09-Cat-B collection

Topic titles Topic descriptions
Model Type Model Name MAP nDCG@20 P@20 MAP nDCG@20 P@20

Traditional Retrieval
Baselines

QL 0.100 0.224 0.328 0.075 0.183 0.234
BM25 0.101 0.225 0.326 0.080 0.196 0.255+

Representation-Focused
Matching Baselines

DSSMT 0.054− 0.132− 0.185− 0.046− 0.119− 0.143−

DSSMD 0.039− 0.099− 0.131− 0.034− 0.078− 0.103−

CDSSMT 0.064− 0.153− 0.214− 0.055− 0.139− 0.171−

CDSSMD 0.054− 0.134− 0.177− 0.049− 0.125− 0.160−

ARC-I 0.024− 0.073− 0.089− 0.017− 0.036− 0.051−

Interaction-Focused
Matching Baselines

ACR-II 0.033− 0.087− 0.123− 0.024− 0.056− 0.075−

MPIND 0.056− 0.139− 0.208− 0.043− 0.118− 0.158−

MPCOS 0.066− 0.158− 0.222− 0.057− 0.140− 0.171−

MPDOT 0.044− 0.109− 0.158− 0.033− 0.073− 0.102−

Our Approach

DRMMCH×TV 0.103 0.245 0.347 0.072 0.188 0.253
DRMMNH×TV 0.065− 0.151− 0.213− 0.031− 0.075− 0.100−

DRMMLCH×TV 0.111+ 0.250+ 0.361+ 0.083 0.213 0.275
DRMMCH×IDF 0.104 0.252+ 0.354+ 0.077 0.204 0.267
DRMMNH×IDF 0.066− 0.151− 0.216− 0.038− 0.087− 0.113−

DRMMLCH×IDF 0.113+ 0.258+ 0.365+ 0.087+ 0.235+ 0.310+

deep matching models as well as traditional retrieval models.
For example, on ClueWeb-09-Cat-B topic titles, the relative
improvement of our model over the best performing base-
line (i.e., BM25) is about 11.9%, 14.7%, and 12% in terms
of MAP, nDCG@20 and P@20, respectively. Another inter-
esting finding is that on the Robust04 collection, the per-
formance of DRMMLCH×IDF on topic descriptions can be
comparable to that on topic titles, which is seldom observed
on previous models. This also demonstrates the potential of
our model in handling long queries in ad-hoc retrieval.

5.5 Analysis on DRMM model
We conducted experiments to verify the effectiveness of

different components in the DRMM and analyze the effect
of term embedding dimensions. Through these experiments,
we try to gain a better understanding of the DRRM.

5.5.1 Impact of Different Model Components

To study the effect of different model components, we
compare the original DRMMLCH×IDF with several simpler
versions of the model. Firstly, we removed the term gat-
ing network and used a simple sum to aggregate the scores
from all the query terms. Since the aggregation weight is
uniform, we denote this model as DRMMLCH×UNI . We
also tried removing the histogram mapping layer but kept
the rest unchanged. To turn the variable-length local inter-
actions into a fixed-length representation, we adopted two
pooling strategies. One is dynamic pooling as in [25, 19]
which keeps the position information, and the other is K-
max pooling as in [26] which turns the positional signals into
strength related signals. For a fair comparison, we require
the size of the representation after pooling to be the same
as the size of the matching histogram (i.e., 30). Note that



DRMMLCHxIDF DRMMLCHxUNI DRMMDYNxIDF DRMMKMAXxIDF

Figure 3: Comparison of several simpler versions of
DRMM over topic titles of the two test collections
in terms of MAP.

although the matching network structure is the same, the
learned model is significantly different due to the change of
the input. The matching model based on dynamic pooling
is a position-aware model, while the model based on K-max
pooling is learned with respect to the top strong interaction
signals. We denote the former model as DRMMDYN×IDF

and the latter as DRMMKMAX×IDF .
The comparison results over the topic titles on the two test

collections in terms of MAP are depicted in Figure 3. As we
can see, without the term gating network, DRMMLCH×UNI

performs slightly worse than the original DRMM. Specifi-
cally, the relative MAP drop of DRMMLCH×UNI compared
with DRMMLCH×IDF is about 6.8% and 3.5% on Robust04
and ClueWeb-09-Cat-B, respectively. The results demon-
strate the effectiveness of the differentiation of query term
importance in relevance matching. Besides, we find that
DRMMDY N×IDF based on position-related signals performs
significantly worse than the other two models based on strength-
related signals (i.e., DRMMLCH×IDF and DRMMKMAX×IDF ).
The results indicate that ad-hoc retrieval is more likely to
be a strength-related task rather than a position-related
task. When comparing DRMMKMAX×IDF and the original
DRMMLCH×IDF , we find that DRMMKMAX×IDF works
quite well on Robust04 but fails on ClueWeb-09-Cat-B. The
possible reason is that the document length variation onWeb
data (i.e., ClueWeb-09-Cat-B) is much larger than that on
news data (i.e., Robust04), leading to the failure of the K-
max pooling method which has potential bias towards very
long documents. This further demonstrates the effectiveness
of our matching histogram mapping and the corresponding
histogram based feed forward matching network.

5.5.2 Impact of Term Embeddings

Since we leverage a priori learned term embeddings in
our model, we further study the effect of embedding di-
mensionality on the retrieval performance. Here we report
the performance results on the Robust04 collection using
term embeddings trained by CBOW model with 50, 100,
300, and 500 dimensions, respectively. As shown in Table
3, the performance first increases and then slightly drops
with the increase of dimensionality. Term embeddings of
different dimensionality provide different granularity of se-
mantic similarity; they may also require different amounts
of training data. With lower dimensionality, the similar-
ity between term embeddings might be coarse and hurt the

Table 3: Performance comparison of DRMM over
different dimensionality of term embeddings trained
by CBOW on the Robust04 collection.

Topic Embedding MAP NDCG@20 P@20

Titles

CBOW-50d 0.268 0421 0.375
CBOW-100d 0.270 0.427 0.379
CBOW-300d 0.279 0.431 0.381
CBOW-500d 0.277 0.430 0.381

Descriptions

CBOW-50d 0.268 0.431 0.365
CBOW-100d 0.271 0.433 0.367
CBOW-300d 0.275 0.437 0.371
CBOW-500d 0.274 0.435 0.370

relevance matching performance. However, with larger di-
mensionality, one may need more data to train reliable term
embeddings. Our results suggest that 300 dimensions is suf-
ficient for learning term embeddings effective for relevance
matching on the Robust04 collection.

6. RELATED WORK
By formalizing ad-hoc retrieval as a text matching prob-

lem, deep matching models can be applied to this task so
that features can be automatically acquired in an end-to-end
way. In recent years, a variety of deep matching models have
been proposed for the text matching problems. As men-
tioned before, we can categorize the existing deep match-
ing models into two major types, namely representation-
focused models and interaction-focused models. We have
described several representative deep matching models in
these two classes in previous sections including DSSM, C-
DSSM, ARC-I, ARC-II and MatchPyramid. Here we will
discuss some other related work in this direction.

In the class of representation-focused models, Qiu et al. [21]
proposed Convolutional Neural Tensor Network (CNTN) for
community-based question answering. The CNTN model is
similar to ARC-I, using CNN to build the representations
for each piece of texts. The major difference between CNTN
and ARC-I is that CNTN employs a tensor layer rather than
MLP on top of the two CNNs to compute the matching score
between the two pieces of text. In [25], Socher et al. proposed
an Unfolding Recursive Autoencoder (uRAE) for paraphrase
identification. They first employed recursive autoencoders
to build the hierarchical compositional text representations
based on syntactic trees, and then conducted matching at
different levels for the identification task. In [30], Yin et
al. introduced MultiGranCNN which employs a CNN to ob-
tain hierarchical representations of texts, and then computes
the matching score based on the interactions between these
multigranular representations.

In the class of interaction-focused models, Wang et al. [28]
proposed Deep Match Tree (DeepMatchtree) for the short
text matching problem. Different from DeepMatch [17] which
builds local interactions between texts based on semantic
topics, DeepMatchtree defines interactions in the product
space of dependency trees. A deep neural network is then
leveraged for making a matching decision on the two short
texts, on the basis of these local interactions. In [27], Wan et
al. introduced Match-SRNN to model the recursive match-
ing structure in the local interactions so that long-distance
dependency between the interactions can be captured. The
proposed model was evaluated on two tasks, including com-
munity based question answering and paper citation matching.



Most of these deep matching models are designed for the
semantic matching problem, which is significantly different
from the relevance matching problem in ad-hoc retrieval. In
this work, we introduce a model specifically designed for the
relevance matching problem.

7. CONCLUSIONS
In this paper, we point out that there are significant dif-

ferences between semantic matching for many NLP tasks
and relevance matching for the ad-hoc retrieval task. Many
existing deep matching models designed for the semantic
matching problem thus may not fit the ad-hoc retrieval task.
Based on this analysis, we propose a novel deep relevance
matching model for ad-hoc retrieval, by explicitly address-
ing the three factors in relevance matching. The proposed
model contains three major components, i.e., matching his-
togram mapping, a feed forward matching network, and a
term gating network. Experimental results on two repre-
sentative benchmark datasets show that our model can sig-
nificantly outperform traditional retrieval models as well as
state-of-the-art deep matching models.

For future work, we would like to leverage larger training
data, e.g. click-through logs, to train deeper DRMM so that
we can further explore the potential of the proposed model
on ad-hoc retrieval. We may also include phrase embeddings
so that phrases can be treated as a whole rather than sep-
arate terms. In this way, we expect the local interactions
can better reflect the meaning by using the proper semantic
units in language, leading to better retrieval performance.
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