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Figure 3: Joint Model of Entity Tagging, Resolution and Rela-

tions: over 3 observed mentions, two of which belong to the same

sentence (m0 and m2). For brevity, we have only included (i, j) in

the factor labels, and have omitted ti, tj ,mi and mj .

probability for a setting to all the variables in a document is:

p(t, r, c|m) ∝
∏

ti∈t

ΨT (mi, ti)
∏

cij∈c

ΨC(cij ,mi,mj , ti, tj)

∏

rij∈r

ΨL
R(mi,mj , rij)Ψ

J
R(rij ,mi,mj , ti, tj)

The factors here denote different distributions than in Section 2.

Instead of representing a distribution over the labels of a single

task conditioned on the predictions from another task, these factors

now directly represent the joint (unnormalized) distribution over the

tasks that they are defined over. For example, in Section 2, each

coreference factor defines a distribution over one pairwise boolean

coreference variable conditioned on the entity tags of the mentions.

In the joint model, however, this factor induces a distribution over

both the pairwise boolean variable and the entity tags of the two

mentions, based on the observed features of the two mentions. When

trained, this factor can capture the bi-directional information flow

between the tasks and, for example, encourage the entity tags of two

mentions to be the same if confident about them being coreferent.

Similarly, the relation extraction factors also induce a distribution

over the entity tags of their arguments.

The coreference resolution and relation extraction are not directly

connected in the model, as the dependency between these two tasks

is much weaker in practice. Nonetheless they are not independent.

As part of the same graphical model, information can flow between

the two via entity tags, resulting in indirect improvements to relation

extraction when coreference improves, and vice versa.

4. LEARNING AND INFERENCE
Given the large size, strong dependencies, and complex structure

of the joint model, we cannot directly apply existing approaches to

inference and learning. Instead we propose modifications to pseudo-

likelihood learning for efficient parameter estimation, and a novel

extension to the belief propagation algorithm.

4.1 Piecewise Learning for Joint Models
Learning is used to identify the set of parameters that maximize

the likelihood of the labeled data, which, for our joint model, will

be the joint likelihood over all the three tasks. Common approaches

to maximize the training objective, such as BFGS, unfortunately

cannot be applied to our setting for several reasons. First, many of

these techniques assume inference in their inner loop, which is NP-

Hard for exact inference (and computationally expensive even when

using approximations). Learning with approximate inference for

such models can often diverge [13]. Second, the likelihood is defined

over all the tasks simultaneously, and the optimization approaches

face difficulty balancing between the different tasks, often biasing

the learning for the task with most terms in the objective, which, in

our case, is coreference resolution. Third, the number of parameters

for the joint factors is the full product of multiple domains, resulting

in billions of parameters if not explicitly restricted.

Our approach to learning attempts to address these concerns.

Since joint training is intractable due to the complexity of inference,

we use the piecewise training [28] approach to learn our models.

Instead of learning all the factors jointly, this approach decomposes

the model into pieces, and maximizes the piecewise likelihood by

treating each piece independently. For our joint model, we treat each

factor as an independent piece, separately learning the distribution

over the neighboring unobserved variables given its neighboring

observed variables and features. Further, to facilitate faster conver-

gence, the predictions from entity tagging factors are incorporated

during piecewise training of relation extraction and coreference as

fixed incoming beliefs. To limit the number of parameters that occur

in the joint model between entity tagging and relation extraction,

we only include the supported features, i.e. the features that appear

at least once in the training data. These modifications to existing

approaches enable tractable parameter estimation of the joint model.

Learning a joint model using piecewise training is different from

combining independent models using manually-specified constraints,

as in Roth and Yih [22]. Our factors represent the complete joint

distributions over the multiple tasks they touch. From the constraints

perspective, we are learning soft constraints between tasks, instead

of manually enumerating constraints and hand-tuning the weights;

we can also incorporate such constraints if available.

4.2 Sparsity for Efficient Inference
Due to the number of variables, non-trivial domain sizes, strong

dependencies, and a loopy structure, common approximate inference

techniques, such as belief propagation and sampling, cannot be

applied directly. Belief propagation converges to accurate marginals

in a few iterations when the model is mostly cycle-free, and is fast

when marginalization of each factor is quick. Unfortunately, the

joint model is incredibly loopy due to the large number of factors

that connect variables across the whole document. Further, even

marginalization of individual factors is non-trivial due to the large

domain involved (for example, the neighborhood of ΨJ
R consists of

all combinations of the relation label along with the entity tags for

the argument entities). These reasons prevent the direct use of belief

propagation (BP) in our model.

A few alternatives to belief propagation exist in the literature.

MCMC-based sampling often scales to models such as ours, how-

ever faces local minima issues, and often requires designing cus-

tomized proposal functions. Yet another option for inference would

be to frame the problem as an integer linear program (ILP), as in

Roth and Yih [22]. BP style inference is preferred over ILP for

many reasons (a) BP provides marginals while ILP does not. (b)

Our joint factors assign different scores to each value in the joint

domains. The ILP formulation of our model will result in a cubic

number of binary variables. Further, (c) BP is often more efficient

than linear programming solvers, let alone ILP [31].

Since belief propagation is not directly applicable, we adapt the

algorithm for inference on our model. Our main extension stems

from the insight that during inference in NLP models, most of the

variable marginals often peak during the initial stages of inference,

without changing substantially during the rest of the course of in-

ference. Detecting these low-entropy marginals in earlier phases

and fixing to their high-probability values provides benefits to belief

propagation. First, since the domain now contains only a single



Data #Mentions #Coreference #Relation

Train 15,640 637,160 82,479

Dev 5,545 244,461 34,057

Test 6,598 342,942 38,270

Table 1: Number of variables in the various folds.

Model Accuracy Error Red.

Isolated Model 80.23 -

Joint w/ Coreference 81.24 5.1

Joint w/ Relations 81.77 7.8

Complete Joint 82.69 12.4

Table 2: Entity Tagging: Results for various models.

value, the factors that neighbor the variable can marginalize much

more efficiently. Second, these fixed variables result in fewer cycles

in the model and allow decomposition of the model into independent

inference problems by partitioning at these fixed variables. Lastly,

factors that only neighbor fixed variables can be effectively removed

during inference, reducing the amount of messages that are passed.

To employ these benefits of value sparsity in belief propagation,

we examine the marginals of all the variables after every iteration

of message passing. When the probability of a value for a variable

goes above a predetermined probability threshold ζ, we set the value

of the variable to its maximum probability value, treating it as a

fixed variable for the rest of inference. The parameter ζ directly

controls the computational efficiency and accuracy trade-off, and we

set the value for this parameter based on observing inference on the

held out training data. We incorporate transitivity into the inference

technique by directly propagating the sparse coreference decisions

over their transitive closure after every iteration of message passing.

We only propagate positive sparse coreferent decisions, while being

consistent with negative sparse decisions.

5. EXPERIMENTS
We use the Automatic Content Extraction (ACE) 2004 English

dataset for the experiments, a standard labeled corpus for the three

tasks that we are studying [4]. ACE consists of 443 documents

from 4 distinct news domains, with 7, 790 sentences and 172, 506
tokens. Counts of each type of variable are shown in Table 1. For

these experiments, we use gold mention boundaries, and the coarse-

grained labels for tagging and relations (7 and 8 respectively). We

run 4 iterations of inference with ζ = 0.8.

Isolated Models: We train the isolated models using the features

described in Section 2. Our model for entity tagging achieves an

accuracy of 80.2%, which is impressive considering many of the

mentions are pronouns and pronominals with little evidence in the

context. Our relation extraction model achieves an F1 score of

54.05% which is comparable to existing research that uses only

predicted entity tags (we obtain 61% F1 with gold tags). The coref-

erence model achieves a macro B3 F1 score of 76.34%, which is

competitive with related approaches with predicted entity tags (for

e.g. Haghighi and Klein [7] obtain 76.9).

Joint Inference Results: We first present joint inference between

pairs of tasks. In particular, we separately evaluate the result of joint

inference between entity tagging and each of the other two tasks.

The results, when compared to the isolated models, are shown in

Tables 2, 3 and 4. Allowing uncertainty in entity tags improves the

accuracies of both the tasks, demonstrating the importance of propa-

gating uncertainty along the pipeline. Further, there are significant

Model Prec Rec F1

Pipeline (w/ Tagging) 53.22 54.92 54.05

Joint w/ Tagging 54.93 54.02 54.47

Complete Joint 56.06 54.74 55.39

Table 3: Relation Extraction: Comparison using the F-measure.

Model MUC Pairwise B3

Pipeline (w/ Tagging) 73.81 53.94 76.34

Joint w/ Tagging 71.09 57.59 78.06

Complete Joint 73.00 58.39 78.50

Table 4: Coreference Resolution: MUC metric has been provided

for comparison to exiting work; it is much less informative compared

to Pairwise and B3 since simple baselines attain high scores.

error reductions for entity tagging, corroborating the need for flow

of information from relations and coreference to the tagging model.

When performing inference together on the model defined over

all the three tasks, we achieved further improvements for all three

tasks, most significantly we achieved an error reduction of 12.4%
for the entity tagging task.

6. RELATED WORK
Individual Tasks: There has been considerable research on the

individual tasks covered in this paper.

Relation extraction systems generally fall into two categories.

Feature-based systems [35, 25] employ a variety of features, in-

cluding lexical, syntactical and semantic ones. The other common

approach is to use convolution tree kernel for similarity [34]. Zhou

et al. [36] proposed a composite of the tree kernel and a linear kernel

that outperformed the individual kernels. Jiang and Zhai [10] sys-

tematically explored the feature space and showed that using more

than the basic features only yields small improvements. Nguyen and

Moschitti [17] built a composite kernel similar to Zhou et al. [36]

and found that distant supervision using Wikipedia data improved

performance. Hoffmann et al. [9] considered cases when multiple

relations hold on the same entity mentions.

A majority of systems cast the coreference resolution task as

binary classifications [2]. Haghighi and Klein [7] designed a de-

terministic system based on a rich set of syntactic and semantic

compatibilities. Unlike our model that computes the transitive clo-

sure from all the pairwise predictions, Soon et al. [24] used the most

recent positive antecedent, and Ng and Cardie [16] linked to the best

antecedent among all candidates for each mention. Culotta et al. [3]

argued that the mention-pair method cannot capture features of sets

of noun phrases, and hence use entity-based features.

Joint Inference: In recent years, there has been an increasing in-

terest in approaches to joint representations of multiple information

extraction and natural language processing tasks [14]. Most rele-

vant to our work is the combination of entity labeling and relation

extraction. Roth and Yih [22] use the ILP framework to enforce

manually-specified constraints between the tasks. Yao et al. [32] ac-

complish this through distant supervision via Wikipedia. Similar to

our work, Yu and Lam [33] also model entities and relations using a

discriminative model. Others have combined parsing with NER [5]

and semantic role labeling [27] with mixed success. Finkel et al. [6]

represents a pipeline of NLP tasks as a Bayesian network where each

variable represents one stage of the pipeline. Joint inference has also

been applied to various information extraction tasks such as citation

segmentation and matching [30, 18, 23] and to BioNLP [19, 21].



Our approach to joint inference differs significantly from these.

First, we model three crucial information extraction tasks, including

coreference, which have not been modeled together before. Coref-

erence as the third task requires document-level joint inference, as

opposed to sentence-level joint inference in related work. Difficulty

of inference is further compounded from transitivity. Second, our

resulting model is significantly more loopy than a number of exist-

ing joint inference techniques. Third, as opposed to some of the

related work, we learn both hard and soft constraints between tasks

instead of setting them by hand (as in Roth and Yih [22]), and our

inference provides marginals. Due to the dependencies represented

in our model, and our inference technique, we are able to obtain

consistent improvements in all the three tasks, improving accuracy

as we include more dependencies.

7. CONCLUSIONS
This paper introduces a novel, fully-joint model of three crucial

information extraction tasks, entity tagging, relation extraction, and

coreference. The model contains factors that represent the differ-

ent dependencies that lie between the tasks, resulting in a high

tree-width structure containing all the variables of a document. To

facilitate efficient inference, we introduce a novel extension to belief

propagation that sparsifies variables during inference, effectively

eliminating the need to compute a majority of the messages. The

combination of a joint model, and an accompanying inference tech-

nique, results in improvements to all three tasks. These results add

substantially to our understanding of the joint inference, providing

additional support that the improved representation of multiple tasks

in the same model is beneficial to all the tasks.
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