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Abstract

In data integration we transform information

from a source into a target schema. A gen-

eral problem in this task is loss of fidelity and

coverage: the source expresses more knowl-

edge than can fit into the target schema, or

knowledge that is hard to fit into any schema

at all. This problem is taken to an extreme in

information extraction (IE) where the source

is natural language. To address this issue, one

can either automatically learn a latent schema

emergent in text (a brittle and ill-defined task),

or manually extend schemas. We propose in-

stead to store data in a probabilistic database

of universal schema. This schema is simply

the union of all source schemas, and the proba-

bilistic database learns how to predict the cells

of each source relation in this union. For ex-

ample, the database could store Freebase re-

lations and relations that correspond to natu-

ral language surface patterns. The database

would learn to predict what freebase relations

hold true based on what surface patterns ap-

pear, and vice versa. We describe an anal-

ogy between such databases and collaborative

filtering models, and use it to implement our

paradigm with probabilistic PCA, a scalable

and effective collaborative filtering method.

1 Introduction

Natural language is a highly expressive representa-

tion of knowledge. Yet, for many tasks databases

are more suitable, as they support more effective de-

cision support, question answering and data min-

ing. But given a fixed schema, any database can

only capture so much of the information natural lan-

guage can express, even if we restrict us to factual

knowledge. For example, Freebase (Bollacker et

al., 2008) captures the content of Wikipedia to some

extent, but has no criticized(Person,Person) relation

and hence cannot answer a question like “Who crit-

icized George Bush?”, even though partial answers

are expressed in Wikipedia. This makes the database

schema a major bottleneck in information extrac-

tion (IE). From a more general point of view, data in-

tegration always suffers from schema mismatch be-

tween knowledge source and knowledge target.

To overcome this problem, one could attempt to

manually extend the schema whenever needed, but

this is a time-consuming and expensive process. Al-

ternatively, in the case of IE, we can automatically

induce latent schemas from text, but this is a brit-

tle, ill-defined and error-prone task. This paper pro-

poses a third alternative: sidestep the issue of in-

complete schemas altogether, by simply combining

the relations of all knowledge sources into what we

will refer to as a universal schema. In the case of IE

this means maintaining a database with one table per

natural language surface pattern. For data integra-

tion from structured sources it simply means storing

the original tables as is. Crucially, the database will

not only store what each source table does contain,

it will also learn a probabilistic model about which

other rows each source table should correctly con-

tain.

Let us illustrate this approach in the context of

IE. First we copy tables such as profession from a

structured source (say, DBPedia). Next we create

one table per surface pattern, such as was-criticized-

by and was-attacked-by and fill these tables with the

entity pairs that appear with this pattern in some nat-

ural language corpus (say, the NYT Corpus). At

this point, our database is a simple combination of



a structured and an OpenIE (Etzioni et al., 2008)

knowledge representation. However, while we insert

this knowledge, we can learn a probabilistic model

which is able to predict was-criticized-by pairs based

on information from the was-attacked-by relation.

In addition, it learns that the profession relation in

Freebase can help disambiguate between physical

attacks in sports and verbal attacks in politics. At

the same time, the model learns that the natural lan-

guage relation was-criticized-by can help predict the

profession information in Freebase. Moreover, often

users of the database will not need to study a par-

ticular schema—they can use their own expressions

(say, works-at instead of profession) and still find the

right answers.

In the previous scenario we could answer more

questions than our structured sources alone, because

we learn how to predict new Freebase rows. We

could answer more questions than the text corpus

and OpenIE alone, because we learn how to pre-

dict new rows in surface pattern tables. We could

also answer more questions than in Distant Supervi-

sion (Mintz et al., 2009), because our schema is not

limited to the relations in the structured source. We

could even go further and import additional struc-

tured sources, such as Yago (Hoffart et al., 2012). In

this case the probabilistic database would have inte-

grated, and implicitly aligned, several different data

sources, in the sense that each helps predict the rows

of the other.

In this paper we present results of our first techni-

cal approach to probabilistic databases with univer-

sal schema: collaborative filtering, which has been

successful in modeling movie recommendations.

Here each entity tuple explicitly “rates” source ta-

bles as “I appear in it” or “I don’t”, and the recom-

mender system model predicts how the tuple would

“rate” other tables—this amounts to the probability

of membership in the corresponding table. Collab-

orative filtering provides us with a wide range of

scalable and effective machine learning techniques.

In particular, we are free to choose models that use

no latent representations at all (such as a graphical

model with one random variable per database cell),

or models with latent representations that do not

directly correspond to interpretable semantic con-

cepts. In this paper we explore the latter and use a

probabilistic generalization to PCA for recommen-
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Figure 1: gPCA re-estimates the representations of two

relations and a tuple with the arrival of an observation

r1 (e). This enables the estimation of the probability for

unseen fact r2 (e). Notice that both tuple and relation

components are re-estimated and can change with the ar-

rival of new observations.

dation.

In our experiments we integrate Freebase data

and information from the New York Times Cor-

pus (Sandhaus, 2008). We show that our prob-

abilistic database can answer questions neither of

the sources can answer, and that it uses information

from one source to improve predictions for the other.

2 Generalized PCA

In this work we concentrate on a set of binary source

relations R, consisting of surface patterns as well

as imported tables from other databases, and a set

of entity pairs E . We introduce a matrix X where

each cell xe,r is a binary random variable indicating

whether r (e) is true or not. The upper half of figure

1 shows two cells of this matrix, based on the rela-

tions r1 (“a-division-of ”) and r2 (“’s-parent,”) and

the tuple e (Pocket Books, Simon&Schuster). Gen-

erally some of the cells will be observed (such as

xe,r1
) while others will be not (such as xe,r2

).

We employ a probabilistic generalization of Prin-

ciple Component Analysis (gPCA) to estimate the

probabilities P (r (e)) for every non-observed fact

r (e) (Collins et al., 2001). In gPCA we learn a

k-dimensional feature vector representation vr for

each relation (column) r, and a k-dimensional fea-

ture vector representation ae for each entity pair e.



Figure 1 shows example vectors for both rows and

columns. Notice that these vectors do not have to be

positive nor sum up to one. Given these represen-

tations, the probability of r (e) being true is given

by the logistic function σ (θ) = 1
1+exp(−θ) applied

to the dot product θr,e , a
⊺

evr. In other words, we

represent the matrix of parameters Θ , (θr,e) using

a low-rank approximation AV where A = (ae)e∈E

and V = (vr)r∈R.

Given a set of observed cells, gPCA estimates

the tuple feature representations A and the relation

feature representations V by maximizing the log-

likelihood of the observed data. This can be done

both in batch mode or in a more incremental fashion.

In the latter we observe new facts (such as r1 (e) in

Figure 1) and then re-estimate A and V. In Figure

1 we show what this means in practice. In the upper

half we see the currently estimated representation

vr1
and vr2

of r1 and r2, and a random initializa-

tion for the representation ae of e. In the lower half

we take the observation r1 (e) into account and re-

estimate ae and vr1
. The new estimates can then be

used to calculate the probability σ (a⊺

evr2
) of r2 (e).

Notice that by incorporating new evidence for a

given row, both entity and relation representations

can improve, and hence beliefs across the whole ma-

trix. In this sense, gPCA performs a form of joint or

global inference. Likewise, when we observe sev-

eral active relations for a new tuple, the model will

increase the probabilistic association between theses

relations and, transitively, also previously associated

relations. This gives gPCA a never-ending-learning

quality. Also note that it is easy to incorporate entity

representations into the approach, and model selec-

tional preferences. Likewise, we can easily add pos-

terior constraints we know to hold across relations,

and learn from unlabeled data.

3 Related Work

We briefly review related work in this section. Open

IE (Etzioni et al., 2008) extracts how entities and

their relations are actually mentioned in text, but

does not predict how entities could be mentioned

otherwise and hence suffer from reduced recall.

There are approaches that learn synonym relations

between surface patterns (Yates and Etzioni, 2009;

Pantel et al., 2007; Lin and Pantel, 2001; Yao et

al., 2011) to overcome this problem. Fundamen-

tally, these methods rely on a symmetric notion of

synonymy in which certain patterns are assumed to

have the same meaning. Our approach rejects this

assumption in favor of a model which learns that cer-

tain patterns, or combinations thereof, entail others

in one direction, but not necessarily the other.

Methods that learn rules between textual pat-

terns in OpenIE aim at a similar goal as our pro-

posed gPCA algorithm (Schoenmackers et al., 2008;

Schoenmackers et al., 2010). Such methods learn

the structure of a Markov Network, and are ulti-

mately bounded by limits on tree-width and den-

sity. In contrast, the gPCA learns a latent, although

not necessarily interpretable, structure. This la-

tent structure can express models of very high tree-

width, and hence very complex rules, without loss

in efficiency. Moreover, most rule learners work in

batch mode while our method continues to learn new

associations with the arrival of new data.

4 Experiments

Our work aims to predict new rows of source tables,

where tables correspond to either surface patterns

in natural language sources, or tables in structured

sources. In this paper we concentrate on binary rela-

tions, but note that in future work we will use unary,

and generally n-ary, tables as well.

4.1 Unstructured Data

The first set of relations to integrate into our univer-

sal schema comes from the surface patterns of 20

years of New York Times articles (Sandhaus, 2008).

We preprocess the data similarly to Riedel et al.

(2010). This yields a collection of entity mention

pairs that appear in the same sentence, together with

the syntactic path between the two mentions.

For each entity pair in a sentence we extract the

following surface patterns: the dependency path

which connects the two named entities, the words

between the two named entities, and the context

words of the two named entities. Then we add the

entity pair to the set of relations to which the surface

patterns correspond. This results in approximately

350,000 entity pairs in 23,000 relations.



Table 1: GPCA fills in new predicates for records

Relation <-subj<-own->obj->perc.>prep->of->obj-> <-subj<-criticize->obj->

Obs. Time Inc., American Tel. and Comms. Bill Clinton, Bush Administration

New

United States, Manhattan Mr. Forbes, Mr. Bush

Campeau, Federated Department Stores Mr. Dinkins, Mr. Giuliani

Volvo, Scania A.B. Mr. Badillo, Mr. Bloomberg

4.2 Structured Data

The second set of source relations stems from Free-

base. We choose those relations that hold for entity

pairs appearing in the NYT corpus. This adds 116

relations to our universal schema. For each of the re-

lations we import only those rows which correspond

to entity tuples also found in the NYT corpus. In or-

der to link entity mentions in the text to entities in

Freebase, we follow a simple string-match heuristic.

4.3 Experimental Setup and Training

In our experiments, we hold out some of the ob-

served source rows and try to predict these based

on other observed rows. In particular, for each en-

tity pair, we traverse over all source relations. For

each relation we throw an unbiased coin to deter-

mine whether it is observed for the given pair. Then

we train a gPCA model of 50 components on the

observed rows, and use it to predict the unobserved

ones. Here a pair e is set to be in a given relation

r if P (r (e)) > 0.5 according to our model. Since

we generally do not have observed negative informa-

tion,1 we sub-sample a set of negative rows for each

relation r to create a more balanced training set.

We evaluate recall of our method by measuring

how many of the true held out rows we predict. We

could use a similar approach to measure precision

by considering each positive prediction to be a false

positive if the observed held-out data does not con-

tain the corresponding fact. However, this approach

underestimates precision since our sources are gen-

erally incomplete. To overcome this issue, we use

human annotations for the precision measure. In

particular, we randomly sample a subset of entity

pairs and ask human annotators to assess the pre-

dicted positive relations of each.

1Just because a particular e has not yet been seen in particu-

lar relation r we cannot infer that r (e) is false.

4.4 Integrating the NYT Corpus

We investigate how gPCA can help us answer ques-

tions based on only single data source: the NYT

Corpus. Table 1 presents, for two source relations

(aka surface patterns), a set of observed entity pairs

(Obs.) and the most likely inferred entity pairs

(New). The table shows that we can answer a ques-

tion like “Who owns percentages of Scania AB?”

even though the corpus does not explicitly contain

the answer. In our case, it only contains “buy-stake-

in(VOLVO,SCANIA AB).”

gPCA achieves about 49% recall, at about 67%

precision. Interestingly, the model learns more

than just paraphrasing. Instead, it captures some

notion of entailment. This can be observed in

its asymmetric beliefs. For example, the model

learned to predict “professor-at(K.BOYLE, OHIO

STATE)” based on “historian-at(KEVIN BOYLE,

OHIO STATE)” but would not make the infer-

ence “historian-at(R.FREEMAN,HARVARD)” based

on “professor-at(R.FREEMAN,HARVARD).”

4.5 Integrating Freebase

What happens if we integrate additional structured

sources into our probabilistic database? We observe

that by incorporating Freebase tables in addition to

the NYT data we can improve recall from 49% to

52% on surface patterns. The precision also in-

creases by 2%.

Table 2 sums the results and also gives an ex-
ample of how Freebase helps improve both preci-
sion and recall. Without Freebase, the gPCA pre-
dicts that Maher Arar was arrested in Syria—primarily

because he lived in Syria and the NYT often talks

about arrests of people in the city they live in2. After

learning placeOfBirth(ARAR,SYRIA) from Freebase, the

gPCA model infers wasBornIn(ARAR,SYRIA) as well as

grewUpIn(ARAR,SYRIA).

2In fact, he was arrested in US



Table 2: Relation predictions w/o Freebase.

without Freebase with Freebase

Prec. 0.687 0.666

Rec. 0.491 0.520

E.g. M. Arar, Syria (Freebase: placeOfBirth)

Pred.

A was arrested in B A was born in B

A appeal to B A grow up in B

A, who represent B A’s home in B

5 Conclusion

In our approach we do not design or infer new re-

lations to accommodate information from different

sources. Instead we simply combine source rela-

tions into a universal schema, and learn a proba-

bilistic model to predict what other rows the sources

could contain. This simple paradigm allows us to

perform data alignment, information extraction, and

other forms of data integration, while minimizing

both loss of information and the need for schema

maintenance.

At the heart of our approach is the hypothesis that

we should concentrate on building models to predict

source data—a relatively well defined task—as op-

posed to models of semantic equivalence that match

our intuition. Our future work will therefore investi-

gate such predictive models in more detail, and ask

how to (a) incorporate relations of different arities,

(b) employ background knowledge, (c) optimize the

choice of negative data and (d) scale up both in terms

of rows and tables.
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